Ordenar Resultados
Filtrar por autor
  • Filtrar por Categoría
    Filtrar por tema de intéres
    • FONDECYT REGULAR 1241502
    • Marzo 2021 - Julio 2021
    En EjecuciónAgencia Nacional de Investigación y Desarrollo - ANID

    El potencial de aprendizaje profesional de la autoconfrontación en futuros profesores de pedagogía básica

    Co-Investigador/a
      • NCS2021_14
      • Marzo 2021 - Diciembre 2021
      EjecutadoAgencia Nacional de Investigación y Desarrollo - ANID

      Conocimiento matemático, creencias y emociones hacia la matemática, y desempeño académico en el ámbito de la matemática en la formación en Pedagogía en Educación Básica y Pedagogía en Educación Especial

      Investigador/a Responsable
      • Marzo 2021 - Diciembre 2021
      Ejecutado

      Conocimiento matemático, creencias y emociones hacia la matemática, y desempeño académico en el ámbito de la matemática en la formación en Pedagogía en Educación Básica y Pedagogía en Educación Especial

      [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""][/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
      Investigador/a Responsable
      • Marzo 2021 - Diciembre 2021
      Ejecutado

      Conocimiento matemático, creencias y emociones hacia la matemática, y desempeño académico en el ámbito de la matemática en la formación en Pedagogía en Educación Básica y Pedagogía en Educación Especial

      [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""][/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
      Co-Investigador/a
      • Marzo 2021 - Marzo 2022
      FinalizadoUniversidad del Desarrollo

      La construcción del pensamiento algebraico en la Formación Inicial Docente: Un estudio exploratorio

      [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]Históricamente, el álgebra escolar ha estado vinculado al uso exclusivo de letras y símbolos matemáticos, lo cual es una mirada muy reducida sobre lo que realmente significa el álgebra en la escuela. En los últimos años, diferentes iniciativas promueven el desarrollo del pensamiento algebraico en la educación básica, tipo de pensamiento matemático que supone prestar la atención a las relaciones que escolares construyen, más que a procedimientos aislados. A pesar de los esfuerzos por incorporar el pensamiento algebraico desde los primeros cursos, todavía existen profesores que creen que el álgebra es el conocimiento de procedimientos mecánicos que involucran el uso de letras y símbolos matemáticos y, por tanto, sus esfuerzos apuntan a ese propósito. Lo anterior cobra fuerza en el contexto de la Formación Inicial Docente por dos razones principales: (a) los conocimientos algebraicos de los futuros profesores chilenos al terminar su formación son preocupantes (Santiago et al., 2013); y (b) el pensamiento algebraico es uno de los focos centrales del currículo matemático nacional (Mineduc, 2012). A partir de lo anterior, surge la necesidad de identificar y comprender cómo se desarrolla el conocimiento profesional sobre álgebra que tienen los futuros profesores de educación básica. Este proyecto adopta la idea que el álgebra y el pensamiento algebraico van más allá del uso de la notación algebraica; se favorece el uso de representaciones tan variadas como el lenguaje natural, representaciones manipulativas, pictóricas, numéricas, tabulares, gráficas, entre otras. En concreto, seguimos el marco conceptual propuesto por Kaput (2008) sobre su forma de entender el álgebra y el pensamiento algebraico: la generalización y su representación constituyen aspectos centrales. Dado que este proyecto se interesa por el conocimiento profesional de los futuros profesores, nos centramos en el la competencia denominada Mirada Profesional (Jacobs et al., 2010), la cual busca reconocer y dar sentido a lo hechos que suceden en la clase de matemáticas para poder explicar e informar el aprendizaje de las matemáticas, lo que apoyará las decisiones que tomen los futuros profesores con el propósito de favorecer el aprendizaje de sus estudiantes. Específicamente, la Mirada Profesional involucra tres habilidades interrelacionadas: (a) prestar atención a las estrategias de los niños; (b) interpretar las comprensiones de los niños; y (c) decidir cómo responder sobre la base de las comprensiones de los niños (toma de decisiones). En términos metodológicos, este proyecto sigue las directrices de la Investigación de Diseño (Cobb, Confrey, diSessa, Lehrer y Schauble, 2003). Concretamente, esta investigación se llevará a cabo a través de un experimento de enseñanza, el cual estudia la naturaleza del desarrollo de ideas, herramientas o modelos en los que están contenidos futuros profesores; y entrevistas individuales semiestructuradas, las cuales permitirán profundizar con mayor detalle en los conocimientos de los futuros profesores. En cuanto a los participantes, esta investigación contará con la colaboración de los futuros profesores matriculados en la cátedra “Enseñanza del Álgebra, Datos y Azar” de la carrera de Pedagogía en Educación Básica con mención en Inglés de la UDD. Este curso es obligatorio y se imparte en el sexto semestre. En lo que respecta al diseño del proyecto, los futuros profesores participarán de 8 sesiones de clases destinadas a la enseñanza y aprendizaje del álgebra, donde se trabajarán los diferentes contenidos algebraicos del modelo conceptual seguido, así como las habilidades propias de la Mirada Profesional. Posteriormente, se observará a un grupo de estos futuros profesores en su Práctica y Seminario III, donde estos podrán conducir secuencias de enseñanza y aprendizaje referidas al álgebra. El foco de análisis de la información estará centrado en las respuestas y producciones (escritas y orales) de los futuros profesores, mediante un análisis de las clases grabadas. El impacto esperado de los resultados influirá en tres áreas principales: (a) investigación e internacionalización, consolidando y posicionando una línea de investigación novedosa en el campo de la Educación Matemática; (b) docencia, enriqueciendo la Formación Inicial Docente, a través del desarrollo y promoción del pensamiento algebraico en sus estudiantes; y (c) redes de colaboración, lo cual permitirá conectar y posicionar a esta investigación con un conjunto de investigadores internacionales que asesoran y avalan la calidad y relevancia de este proyecto de investigación. Referencias Cobb, P., Confrey, J., diSessa, A., Lehrer, R. y Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9-13. Jacobs, V. R., Lamb, L. L. y Philipp, R. (2010). Professional noticing of children’s mathematical thinking. Journal for Research in Mathematics Education, 41(2), 169-202. Kaput, J. (2008). What is algebra? What is the algebraic reasoning? En J. J. Kaput, D. W. Carraher y M. L. Blanton (Eds.), Algebra in the early grades (pp. 5-17). Nueva York, NY: Lawrence Erlbaum Associates. Ministerio de Educación de Chile [MINEDUC] (2012). Bases Curriculares. Primero a Sexto Básico. Santiago, Chile: Autor. Santiago, P., Benavides, F., Danielson, C., Goe, L. y Nusche, D. (2013). Teacher Evaluation in Chile. París: OCDE.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
      Investigador/a Responsable
      • FONDECYT REGULAR 1241502
      • Marzo 2021 - Julio 2021
      En EjecuciónAgencia Nacional de Investigación y Desarrollo - ANID

      El potencial de aprendizaje profesional de la autoconfrontación en futuros profesores de pedagogía básica

      Co-Investigador/a
        • 591123
        • Marzo 2021 - Octubre 2022
        FinalizadoFONDART

        [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]Artista Responsable, FONDART Regional 591123, “Retratos del vínculo materno” - Proyecto de creación artística con madres en la región de Los Lagos, marzo 2021 a octubre de 2022. Monto $ 6.392.944[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
        Investigador/a Responsable
        • NCS2021_14
        • Enero 2021 - Septiembre 2021
        EjecutadoAgencia Nacional de Investigación y Desarrollo - ANID

        Investigación de la estructura semántica asociada al estereotipo género-ciencias

        Investigador/a Responsable
        • Enero 2021 - Septiembre 2021
        Ejecutado

        Investigación de la estructura semántica asociada al estereotipo género-ciencias

        [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""][/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
        Investigador/a Responsable
        • Enero 2021
        FinalizadoUniversidad del Desarrollo

        Summer School 2021: Álgebra más allá de letras y números

        [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]El propósito general de la investigación es estudiar la capacidad de generalización evidenciada por estudiantes de 10-11 años al trabajar con diferentes contenidos de carácter algebraico. La relevancia e impacto de este proyecto tiene relación con el tópico que aborda: la generalización, un tópico que se reconoce como la esencia de actividad matemática, la cual permite a los estudiantes hacer explícito este tipo de pensamiento (Carpenter y Franke, 2001; Dienes, 1961; Dreyfus, 2002; Krutetskii, 1976; Lee, 1996; Mason, 1996). Si bien estudios previos muestran cómo estudiantes de 6-12 años generalizan y expresan dichas relaciones al responder a diferentes problemas y situaciones de carácter algebraico (e.g., Ayala-Altamirano y Molina, 2019; Blanton y Kaput, 2004; Brizuela, Blanton, Sawrey, Newman-Owens y Murphy Gardiner, 2015; Morales, Cañadas, Brizuela y Gómez, 2018; Rivera y Becker, 2008; Schliemann, Carraher y Brizuela, 2012; Warren, Miller y Cooper, 2013), y aunque el álgebra se ha incorporado en currículo nacional, existe poca evidencia sobre cómo se está desarrollando está capacidad en los estudiantes chilenos. Con base en la idea anterior, la conjetura general es que estos estudiantes también mostrarán evidencias de generalización a partir de actividades propuestas. En concreto, la conjetura es que luego de sucesivas intervenciones en el aula, los estudiantes generalizarán las relaciones matemáticas involucradas en diferentes problemas, mediante una sofisticación en la forma de: (a) expresar y representar dichas generalizaciones; (b) justificar y argumentar sus ideas; y (c) razonar. A partir de lo anterior, y considerando las características propias del diseño y el contexto en el cual se llevará a cabo este estudio, la pregunta de investigación es ¿cómo generalizan estudiantes de 10-11 años al participar de diferentes actividades que tienen un carácter algebraico? Para responder a esta pregunta, se han definido tres objetivos de investigación (O): O.1. Describir y caracterizar las representaciones usadas por estudiantes de 10-11 años al generalizar las relaciones matemáticas involucradas en diferentes problemas de carácter algebraico (aritmética generalizada; equivalencia, expresiones, ecuaciones e inecuaciones; y pensamiento funcional). O.2. Analizar las justificaciones matemáticas evidenciadas por estudiantes de 10-11 años al generalizar las relaciones matemáticas involucradas en diferentes problemas de carácter algebraico (aritmética generalizada; equivalencia, expresiones, ecuaciones e inecuaciones; y pensamiento funcional). O.3. Identificar evidencias en el razonamiento matemático de los estudiantes de 10-11 años al generalizar las relaciones matemáticas involucradas en diferentes problemas de carácter algebraico (aritmética generalizada; equivalencia, expresiones, ecuaciones e inecuaciones; y pensamiento funcional).[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
        Investigador/a Responsable