Proyectos
- PYT-2026-186
- Abril 2026 - Marzo 2029
AdjudicadoFundación para la Innovación Agraria - FIA
Obtención de ingredientes funcionales desde pulpa de sandía residual post cosecha para su uso en la industria de alimentos funcionales y en la agricultura
[vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]La producción de semillas de sandía en Chile es una de las que genera mayores volúmenes (12,5%) y mejores precios (26 MM U$FOB) de
exportación respecto del total de semillas exportadas. En los últimos 5 años su exportación ha aumentado considerablemente ocupando el
segundo lugar en este mercado. Derivado del procesamiento de los frutos se genera un alto porcentaje de pulpa y cáscara; residuos no
aprovechables como subproducto para otras industrias como cuarta gama y/o farmacéutica. El elevado contenido antioxidantes de la sandía
representa una oportunidad para su extracción y uso en otras industrias. La solución innovadora permitirá reutilizar grandes volúmenes de la
pulpa y cáscara, mitigando su disposición inadecuada y mejorando prácticas agrícolas y biotecnológicas. El objetivo de la propuesta es
desarrollar un paquete tecnológico consistente en tres aplicaciones que permiten valorizar los residuos de cáscara y pulpa de sandía para la
producción de nutracéuticos, bioenmienda de suelos provenientes de relaves mineros, y sustrato para el crecimiento de microorganismos. El
proyecto busca generar innovaciones que promuevan la transformación de los residuos agrícolas, proyectando así nuevos negocios para los
productores hortícolas en la industria de los alimentos dando valor agregado a los residuos derivados del procesamiento de semillas. Los
resultados esperados de esta iniciativa son: Portafolio de al menos 2 ingredientes funcionales (Licopeno y Citrulina) desarrollados y
caracterizados; validación técnica del ingrediente principal (Licopeno o citrulina) con actividad antioxidante; bioenmienda validada en un
entorno operacional (campo), alcanzando el nivel de madurez tecnológica TRL7; análisis de mercado robusto que incluye un plan de
escalamiento técnico de la bioenmienda; medio de cultivo validado en un entorno operacional (empresas), alcanzando el nivel de madurez
tecnológica TRL7; y análisis de mercado robusto que incluye un plan de escalamiento técnico.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
Investigador/a Responsable
- Abril 2026
AdjudicadoAgencia Nacional de Investigación y Desarrollo - ANID
Evaluation of microplastic pollution on soil microbiota, biogeochemistry, and crop health in agricultural systems
[vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]o assess microplastic pollution in agricultural soils in the O'Higgins Region and its impact on biogeochemical cycles, soil microbiota, and the eco-physiological and agronomic response of agricultural plants.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
Patrocinante
- Abril 2026
AdjudicadoAgencia Nacional de Investigación y Desarrollo - ANID
Evaluation of microplastic pollution on soil microbiota, biogeochemistry, and crop health in agricultural systems
[vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]o assess microplastic pollution in agricultural soils in the O'Higgins Region and its impact on biogeochemical cycles, soil microbiota, and the eco-physiological and agronomic response of agricultural plants.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
Patrocinante
- Abril 2026 - Marzo 2029
AdjudicadoAgencia Nacional de Investigación y Desarrollo - ANID
Effects of increased waterlogging under climate change on avocados (Persea americana Mill cv. Hass) grafted to several rootstocks
[vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]Avocado is a very nutritious and tasty fruit, characteristics that have caused a high global demand for this fruit. Increasing evidence of health benefits of the avocado is both driving increased consumption and stimulating research. Over the next few decades, a number of climate-related factors are expected to undergo significant change, leading to increases in CO2 and, depending on the region, temperature, humidity, salinity, flooding, and drought. Chile is expected to experience more frequent and severe flooding in the future due to climate change and sea level rise. By 2050, flooding in Chile could increase by an order of magnitude compared to the previous decade, while by the end of the century, Chile could experience more than 100 days of flooding each year. The frequency and severity of flooding will increase as sea levels rise. Under such predicted conditions, avocado orchards will suffer significant harm from waterlogging, which significantly will affect the growth, physiological performance and a general avocado production.
The majority of avocado orchards are currently vulnerable to sporadic waterlogging as a result of climate change, either because of poor soil qualities or occasionally rising water tables. Waterlogging detrimentally affects avocado orchards at various levels. Reduced root and shoot growth due to soil oxygen depletion (plant-soil system), decreased transpiration rate, changes in the soil's oxidation-reduction status, decreased redox potential and ultimately decreased avocado production are the main effects of waterlogging on avocado. Climate change is increasing the frequency and severity of extreme weather events with flooding being the largest concern for Chile. Investigating how climate change factors combine with waterlogging stress, novel genes, and signaling components can provide useful insights into plant responses to waterlogging stress and future agricultural difficulties
The species and occasionally the cultivar determine how long a plant may survive in a waterlogged condition. The rootstock (clonal or seedling rootstocks) used in the orchard may have an impact on the sensitivity to waterlogging. In this Project, it was hypothesized that: (1) Hass avocado grafted to different rootstocks (clonal or from seedling) may have a differential performance under waterlogging conditions and that the tolerance is driven by rootstock cultivar, stress severity, balance of oxidative stress and defense system at morpho-physiological, biochemical and molecular level and (2): Clonal o seedling rootstock influence Hass avocado responses to waterlogging by affecting root microbial community, carbon, nitrogen cycling and reduced soil components. Thus, the main objective of this proposal is to evaluate the effects of waterlogging on grafted Hass avocado to 04 different rootstocks (Dusa, Duke 7, Mexicola and Zutano) mainly used in the Central and South-Central region of Chile.
A systematic fingerprinting analysis will be used in this project by integrating different tools for deep analysis (Chemo-Metabolomics, transcriptomics and metagenomics) and for monitoring changes in morpho-physiological and gas-exchange parameters, changes in plant-soil system by evaluating the composition and function of microbial communities within the pot soil in each treatment, the antioxidant defense system and reactive oxygen species, for better understanding the regulatory mechanisms of tolerance to waterlogging, identification of the potential genes regulating tolerance to waterlogging in Hass avocado and finally the selection of the rootstock with better agronomic performance. Four (4) different rootstocks will be used in this research (two hybrids from Mexican and Guatemalan races - Zutano and Dusa, two Mexican races - Mexicola and Duke 7) which will be grafted with the scion material collected from Hass avocado cultivar. Mexicola and Zutano Will be propagated by seeds; Duke 7 clonally propagated and clonal Dusa plantlets acquired in the national plant propagation nurseries due to protection of intellectual property. One year grafted Hass avocado on different rootstocks will be subjected to a waterlogging greenhouse experiment by submerging them in a plastic water tank with water level 5 cm above the soil Surface (140% field capacity) for 3, 6, 9, and 15 days against the control treatment (no waterlogging stress). Morphological, physio-biochemical and gas-exchange parameters, soil nutrient dinamics, function and composition of microbial community within the pot soil and sampling for transcriptomic analysis will then be performed.
The results of this study are expected not only to provide more foundation into the agronomic, biochemical and molecular aspects associated to waterlogging of Hass avocados grafted on different rootstocks but also provide potential biomarkers and genes involved in stress tolerance and select the best suited rootstocks for the current and the upcoming extreme climate change events, which may help to implement new Hass avocado production protocols that will reduce this predicted climate change problem in practice. This project will generate scientific and academic publications, extension and training of young researchers and will strengthen the network with national and international key partners. The findings will be also valuable for agronomists, plant physiologists, microbiologists and plant breeders to develop new avocado production protocols useful for waterlogging conditions that are predicted in Chile.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
Investigador/a Responsable
- Marzo 2026
AdjudicadoUniversidad de O'Higgins
From Physics to Agricultural Practice: The impact of raindrops on Pseudomonas syringae pv syringae inoculated on sweet cherry leaves
[vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]We investigate how rain-mediated mechanical processes influence the spread of pathogens under field conditions. While it is well established that water is a primary vector for bacterial movement between plants, few studies have examined the detailed hydrodynamic mechanisms involved, particularly in the context of leaf morphology, surface roughness, and microbial adhesion. This gap restricts our ability to develop predictive models and preventive strategies for managing rain-borne plant diseases.
The project's general objective is to elucidate the coupling between raindrop impact dynamics and bacterial dispersal patterns on cherry leaves under realistic rainfall conditions. Specifically, it aims to (i) characterize the mechanical interaction between raindrops and cherry leaves using high-speed imaging and physical analysis to observe the dispersal patterns of Pseudomonas syringae pv. syringae (Pss). (ii) evaluate the spatial dispersal of Pss inoculated artificially onto cherry leaves at different concentrations under controlled temperature and rainfall conditions, and (iii) develop an integrative predictive model based on physical variables of rain-leaf interaction and experimentally measured environmental conditions to estimate the dispersal and severity of Pss attack.
Methodologically, our study combines high-speed photography, controlled laboratory rain simulations, and microbiological assays. We will perform experiments in a custom-designed rainfall simulator allowing precise control of droplet size, velocity, and impact angle. Bacterial suspensions of Pseudomonas syringaea pathogen commonly associated with cherry cankerwill be applied to leaves under standardized conditions. The dynamics of droplet impact, splash formation, and secondary droplet ejection will be recorded at high temporal resolution to quantify mechanical energy transfer and spatial distribution of splashed particles. Parallel microbiological analyses will determine bacterial survival rates, concentration profiles, and the extent of leaf-to-leaf contamination. We will integrate these results into a predictive model linking rainfall characteristics to potential bacterial dispersal distances and infection probabilities.
We aim to enhance our understanding of the biophysical coupling between rainfall and pathogen mobility, establish a set of empirical relationships for disease spread modeling, and provide practical recommendations for orchard management under varying climatic scenarios. By bridging the gap between plant pathology and fluid mechanics, this project will provide a mechanistic foundation for reducing rain-mediated bacterial diseases in high-value fruit crops, contributing to the sustainability and resilience of O'Higgins agriculture.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
Responsable Alterno
- Marzo 2026
AdjudicadoUniversidad de O'Higgins
From Physics to Agricultural Practice: The impact of raindrops on Pseudomonas syringae pv syringae inoculated on sweet cherry leaves
[vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]We investigate how rain-mediated mechanical processes influence the spread of pathogens under field conditions. While it is well established that water is a primary vector for bacterial movement between plants, few studies have examined the detailed hydrodynamic mechanisms involved, particularly in the context of leaf morphology, surface roughness, and microbial adhesion. This gap restricts our ability to develop predictive models and preventive strategies for managing rain-borne plant diseases.
The project's general objective is to elucidate the coupling between raindrop impact dynamics and bacterial dispersal patterns on cherry leaves under realistic rainfall conditions. Specifically, it aims to (i) characterize the mechanical interaction between raindrops and cherry leaves using high-speed imaging and physical analysis to observe the dispersal patterns of Pseudomonas syringae pv. syringae (Pss). (ii) evaluate the spatial dispersal of Pss inoculated artificially onto cherry leaves at different concentrations under controlled temperature and rainfall conditions, and (iii) develop an integrative predictive model based on physical variables of rain-leaf interaction and experimentally measured environmental conditions to estimate the dispersal and severity of Pss attack.
Methodologically, our study combines high-speed photography, controlled laboratory rain simulations, and microbiological assays. We will perform experiments in a custom-designed rainfall simulator allowing precise control of droplet size, velocity, and impact angle. Bacterial suspensions of Pseudomonas syringaea pathogen commonly associated with cherry cankerwill be applied to leaves under standardized conditions. The dynamics of droplet impact, splash formation, and secondary droplet ejection will be recorded at high temporal resolution to quantify mechanical energy transfer and spatial distribution of splashed particles. Parallel microbiological analyses will determine bacterial survival rates, concentration profiles, and the extent of leaf-to-leaf contamination. We will integrate these results into a predictive model linking rainfall characteristics to potential bacterial dispersal distances and infection probabilities.
We aim to enhance our understanding of the biophysical coupling between rainfall and pathogen mobility, establish a set of empirical relationships for disease spread modeling, and provide practical recommendations for orchard management under varying climatic scenarios. By bridging the gap between plant pathology and fluid mechanics, this project will provide a mechanistic foundation for reducing rain-mediated bacterial diseases in high-value fruit crops, contributing to the sustainability and resilience of O'Higgins agriculture.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
Responsable Alterno
- 2024/19635-0
- Febrero 2026 - Febrero 2031
AdjudicadoSão Paulo Research Foundation | FAPESP
Solutions for mitigating and adapting agricultural crops and pastures to a future climate scenario of a 2°C temperature increase, by inoculating plants with nitrogen-fixing and plant growth-promoting bacteria
[vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]Anthropogenic climate change and its impacts on managed ecosystems pose a threat to global food security and the sustainability of farming systems. Rising temperatures, combined with more frequent and intense extreme weather events such as droughts and heatwaves, compromise agricultural productivity, the nutritional quality of food and its supply, raising costs and exposing the most vulnerable populations to food insecurity. Rising temperatures also impact the flow of greenhouse gases in ecosystems, both due to changes in the rate of carbon assimilation in biomass and changes in the rates of carbon dioxide, nitrous oxide and methane emissions from the soil. In recent decades, the technology of inoculating seeds with nitrogen-fixing (BFN) and plant growth-promoting (BPCV) bacteria, such as Bradyrhizobium spp. in legumes and Azospirillum brasilense and Pseudomonas fluorescens in grasses, has shown promising results, both by increasing productivity and by making plants more resilient to abiotic stresses. In this way, inoculation has the potential to mitigate the effects of the rise in temperature predicted for the coming decades. This mitigation potential will depend on both the magnitude of the temperature increase and the ability of these cultivated species to acclimatize in a heated atmosphere. Inoculation techniques also substantially reduce the use of nitrogen fertilizers, contributing to the mitigation of global warming by reducing nitrous oxide emissions from the soil. In this proposal, we will evaluate how agricultural crops and pastures of recognized economic importance, such as soybeans, sorghum, corn and Mombasa grass, will be impacted by a temperature increase of +2 °C and how the inoculation of BFN and BPCV can mitigate or amplify these effects. Physiological, nutritional, biochemical, plant growth and productivity parameters will be assessed, as well as the impacts on the soil microbiota and microclimate, and the emission of greenhouse gases in each crop. The experiments will be conducted under field conditions, using the outdoor plant heating system (T-FACE), in which automatically regulated infrared heaters keep the plants warm at +2 °C above the ambient temperature. This system is the only one in Latin America that allows temperature manipulation in field conditions, without physical limitations that alter the microclimate or restrictions on root growth, and is an excellent tool for studying the impact of future temperature increases in managed ecosystems. The results of this study will contribute to a more precise understanding of the future impacts of rising temperatures on the country's main agricultural crops and the potential for mitigating these effects by inoculating plants with nitrogen-fixing and plant growth-promoting bacteria. These results could strengthen Brazilian agriculture, improving its resilience and increasing its competitiveness on the international stage. This previously unpublished data could improve the management of these species in the face of future climate change scenarios and provide important data for decision-makers.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
Co-Investigador/a
- SiAgro 126RT0191
- Febrero 2026 - Febrero 2030
AdjudicadoPrograma Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED)
SiAgro – Red iberoamericana sobre el uso del silicio en la mitigación de estreses múltiples, fortaleciendo la sostenibilidad agroalimentaria de la región
[vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]La Red Iberoamericana CYTED coordinada por Renato de Mello Prado (UNESP, Brasil) integra 15 grupos y 51 investigadores de Brasil, Chile, Colombia, Ecuador, México, Paraguay, Perú, Portugal y Uruguay para fomentar la colaboración en fertilidad de suelos, nutrición vegetal y manejo sustentable de cultivos, articulando universidades, institutos como Embrapa e INIA, universidades nacionales e internacionales y agencias de extensión. Dentro de este marco, el proyecto propuesto "El silicio es una estrategia para mitigar estreses para la sostenibilidad agroalimentaria de cultivos en Brasil, Perú, Paraguay, Colombia, Ecuador y Chile" (SiAgro, 2026-2029) posiciona el silicio como herramienta clave para enfrentar sequía, salinidad, enfermedades y deficiencias nutricionales en cultivos como maíz, arroz y caña, validando dosis y formas de aplicación (foliar, radicular, nano-Si), estudiando mecanismos fisiológicos, bioquímicos, moleculares (transportadores Lsi1/Lsi2, pared celular, antioxidantes) y promoviendo transferencia tecnológica para pequeños productores, con énfasis en resiliencia climática en suelos volcánicos, aluviales y tropicales.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
Co-Investigador/a
- SiAgro 126RT0191
- Febrero 2026 - Febrero 2030
AdjudicadoPrograma Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED)
SiAgro – Red iberoamericana sobre el uso del silicio en la mitigación de estreses múltiples, fortaleciendo la sostenibilidad agroalimentaria de la región
[vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]La Red Iberoamericana CYTED coordinada por Renato de Mello Prado (UNESP, Brasil) integra 15 grupos y 51 investigadores de Brasil, Chile, Colombia, Ecuador, México, Paraguay, Perú, Portugal y Uruguay para fomentar la colaboración en fertilidad de suelos, nutrición vegetal y manejo sustentable de cultivos, articulando universidades, institutos como Embrapa e INIA, universidades nacionales e internacionales y agencias de extensión. Dentro de este marco, el proyecto propuesto "El silicio es una estrategia para mitigar estreses para la sostenibilidad agroalimentaria de cultivos en Brasil, Perú, Paraguay, Colombia, Ecuador y Chile" (SiAgro, 2026-2029) posiciona el silicio como herramienta clave para enfrentar sequía, salinidad, enfermedades y deficiencias nutricionales en cultivos como maíz, arroz y caña, validando dosis y formas de aplicación (foliar, radicular, nano-Si), estudiando mecanismos fisiológicos, bioquímicos, moleculares (transportadores Lsi1/Lsi2, pared celular, antioxidantes) y promoviendo transferencia tecnológica para pequeños productores, con énfasis en resiliencia climática en suelos volcánicos, aluviales y tropicales.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
Co-Investigador/a
- Enero 2026
AdjudicadoMinisterio de Ciencia, Tecnología, Conocimiento e Innovación
Exposición dietaria a micotoxinas en lactantes hasta 24 meses en Chile: determinación en fórmulas lácteas, preparados y cereales mediante HPLC-MS/MS
[vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]Se han identificado más de 400 micotoxinas, químicamente
estables y habituales en alimentos, con efectos
comprobados de carcinogenicidad, inmunosupresión,
disrupción endocrina, genotoxicidad,
neurotoxicidad y alteraciones en el crecimiento,
desarrollo y reproducción. En este contexto, la
baja natalidad en Chile acentúa la necesidad de
proteger la infancia temprana(0-24 meses), etapa en
que fórmulas, preparados y cereales constituyen
una fuente de exposición.
La evidencia internacional confirma su alta
presencia en alimentos infantiles. En Chile, aunque
los estudios son limitados, se ha detectado
aflatoxinaM1, ocratoxinaA, deoxinivalenol y
zearalenona. Sin embargo, el Reglamento Sanitario
de los Alimentos(RSA) considera menos micotoxinas,
con límites mucho menos estrictos que la UE y sin
enfoque en la infancia, generando una brecha
regulatoria. Este estudio, en línea con la
Estrategia Nacional de Salud 2021-2030
(alimentación inocua, prevención de ECNT y
desarrollo infantil), dotará al ISP de capacidades
de vigilancia, fiscalización, investigación,
transferencia tecnológica y referencia, mediante
HPLC-MS/MS validado para 19 micotoxinas reguladas y
emergentes.
Objetivo: Evaluar el riesgo por exposición
dietaria a micotoxinas en menores de 24 meses,
mediante su determinación en fórmulas lácteas,
alimentos preparados y cereales infantiles
comercializados en Chile.
Métodos: Estudio transversal; muestreo
estratificado(300 muestras); análisis HPLC-MS/MS
según norma UE para 19 micotoxinas(reguladas y
emergentes); comparación regulatoria, cálculo de
IDE(μg/kg-día) y caracterización del
riesgo(HQ/MOE).
Resultados esperados: línea base nacional de
micotoxinas en alimentos infantiles por HPLC-MS/MS;
identificación de ocurrencias y co-ocurrencias;
comparación con límites UE; estimación de
exposición y riesgo por grupo etario; y evidencia
científica para actualizar el RSA, reduciendo
riesgos y orientando políticas públicas en
protección infantil.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
Co-Investigador/a





