Ordenar Resultados
Filtrar por autor
  • Filtrar por Categoría
    Filtrar por tema de intéres
    • Abril 2021 - Abril 2024
    FinalizadoAgencia Nacional de Investigación y Desarrollo - ANID

    Interactive effect of organic-mineral amendments and “core microbiome” in restoration of abandoned mine tailings: promoting ecological processes and natural resilience

    [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]Mining activities have discharged large amounts of wastes or mine tailings to the environment, which represent an important environmental issue. Mine tailings are mainly characterised by poor physicochemical properties that limit the plant establishment and development. The most negative property in these mine wastes is the high content of metals and metalloids [metal(loid)s], which are often highly toxic due to acid pH that increases metal(loid) bioavailability. This negatively affects living organisms and ecological functioning since soil microorganisms are pioneer colonisers that mediate the plant establishment. Also, mine tailings are usually deposited in abandoned locations of large land cover; from where, due to their physical characteristics, they can be transported by air and water, affecting communities and the environment in surrounding areas. There are several industrial strategies focused on the physical and chemical management of mine tailings, but these are highly expensive and occasionally not effective. These strategies have not been suitable techniques to reduce negative impacts of mine tailings on the environment. In this context, biological approaches, such as phytoremediation, have been proposed as more appropriate strategies due to low cost, easy applicability, and promising results. Nevertheless, most of the studies focused on phytoremediation of mine tailings, especially Chilean studies, have been performed in laboratory conditions. Although these studies show promising conclusions, in many cases unsuccessful results are obtained at field conditions, mainly due to laboratory experiments do not consider the dynamic field variability and potential ecological interactions. Based on the above, the proposed research aims to evaluate the effect of the initial addition of organic-mineral amendments and the bioaugmentation of microbial communities with “core microbiome” from the root-zone of native herbaceous on the growth and development of native plants and microbial communities at copper mine tailings. We hypothesise that the growth and development of native plants in mine tailings will be promoted by the improvement of physicochemical properties of modified mine tailings (incipient technosols) through the addition of organic-mineral amendments, and the bioaugmentation of microbial communities with “core microbiome” involved in plant fitness obtained from copper mine tailings and surrounding soils. To evaluate the mentioned hypothesis, this study will be executed in three phases: 1) Initial field characterisation: this will be done for mine tailings and soils under sclerophyllous forest; 2) Collection and recruitment of “core microbiome”: this will study the composition, function, and interactions of “core microbiome” obtained from the root-zone of native herbaceous established on mine tailings and soils under sclerophyllous forest, by which a laboratory-scale assay it is needed to produce inoculum of such ecological units (cores); 3) Restoration field experiment: this consists on the field establishment of native herbaceous species by bioaugmentation with “core microbiome” from root-zone mine tailings and root-zone soil on incipient technosols produced by the addition of organic-mineral amendments on mine tailings. These phases are designed to be performed in three years. This study can provide insights of the promotion of ecological process and natural resilience on microbial communities of mine tailings and surroundings, which can allow the initial plant establishment a development for later possible plant recruitment from the native sclerophyllous forest. This would also evaluate whether mine tailings can be in situ managed instead of been totally removed, which implies high costs and workflow to enterprises. Additionally, this study would represent the first approach of the evaluation of the biological functioning and composition of microbial communities from root-zone mine tailings in Chile, from its current state to the subsequent restoration process.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
    Investigador/a Responsable
    • Abril 2021 - Febrero 2024
    En Ejecución

    Characterization of the resistance of indicator bacteria against critical antimicrobials and identification of associated risk factors in healthy dogs from the Metropolitan Region

    [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""][/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
    Co-Investigador/a
    • URO2295
    • Abril 2021 - Abril 2024
    AdjudicadoMinisterio de Educación

    Effects of eccentric, concentric and eccentric/concentric training on muscle function and mass, functional performance, cardiometabolic health, quality of life and molecular adaptations of skeletal muscle in COPD patients: a multicenter randomized trial

    Co-Investigador/a
    • Abril 2021 - Marzo 2023
    En Ejecución

    Transferencia Drosophila suzukii: Plaga presente – Futura convivencia

    [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""][/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
    Investigador/a Responsable
    • NCS2021_14
    • Abril 2021 - Marzo 2025
    En EjecuciónAgencia Nacional de Investigación y Desarrollo - ANID

    Understanding and modeling visual numerosity perception

    Investigador/a Responsable
    • Abril 2021 - Marzo 2025
    En Ejecución

    Understanding and modeling visual numerosity perception

    [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""][/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
    Investigador/a Responsable
    • Abril 2021 - Marzo 2023
    En Ejecución

    Transferencia Drosophila suzukii: Plaga presente – Futura convivencia

    [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""][/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
    Co-Investigador/a
    • Abril 2021 - Marzo 2024
    FinalizadoAgencia Nacional de Investigación y Desarrollo - ANID

    Facilitadores y barreras en la experiencia escolar diaria de niños y niñas con diagnóstico de discapacidad que participan en Programas de Integración Escolar

    [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]The School Integration Program (PIE) is one of the most critical educational inclusion policies in Chile. PIE is a form of special subsidy to schools, using as criteria temporary and permanent special educational needs. It is found throughout the national territory, considered successful at the implementation level and in the integration of new support professionals. However, it has received criticism such as the low relationship with concepts such as school effectiveness, the individualization, and stigmatization of program users by focusing on deficits and not so much on barriers and facilitators of inclusion, as well as the low access and participation of students with disabilities. Furthermore, few studies list children participating in PIE as primary informants. The present study seeks to know and analyze boys' and girls' daily experiences with disabilities in various areas of the national territory. The conceptual framework is the social studies on disability to understand the experience of children with disabilities in a social context that can be both beneficial and detrimental to their school inclusion. The other reference for the project is the new social studies of childhood while promoting that children are valid informants of their realities. Objectives: This study aims to analyze the perspectives of children in situations of motor and sensory disability participating in the PIE about the barriers and facilitators for inclusion in their daily school experiences, as well as the influence that PIE has had on their school lives. Methodology: it is a qualitative study of an analytical nature to be carried out in 5 macro zones of the national territory for three years, through specially designed narrative interviews with 31 children with motor and sensory disabilities, including interviews with the PIE coordinators of their schools. Expected results: The project hopes to generate knowledge about PIE and disability as a special educational need, based on the experience of children with disabilities, to account for their specific experiences and needs, and possible solutions to the barriers presented. It also seeks to generate specific methodological knowledge to collect data with children with disabilities. It is a transdisciplinary project in that disability is a phenomenon that must be studied from different fields; therefore, an educational psychologist, a social psychologist, an educator, and a kinesiologist are included in the researchers' team.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
    Co-Investigador/a
      • FOVI240153
      • Abril 2021 - Marzo 2024
      FinalizadoAgencia Nacional de Investigación y Desarrollo - ANID

      Introduction: Ultrasound (US) exams are extensively used in Chile and around the world. This non-invasive imaging technique has many advantages when compared to magnetic resonance, computed tomography, and others because it has a low cost, it does not need ionizing radiation, and it is portable equipment. However, this technique has many challenges; the most known is the balance between resolution and penetration depth. Recently, in 2011, a new technique of US has been described: the ultrasound localization microscopy (ULM). However, it was only in 2015 that this technique gained knowledge with the publication of Errico et al. (2015) who described the ultrafast ultrasound localization microscopy applied in vivo in rats’ brain. ULM eliminates the challenge of the balance between resolution and penetration; but a new challenge emerges: the balance between localization precision of microbubble, microbubble concentration, and acquisition time. The microbubbles (MB) are the contrast agent for the US technique. They have 1-5 µm in diameter and act as a blinking source. These MB are injected into the bloodstream and flow into the circulatory system. ULM is also known as super-resolution imaging; it can produce vascular images with a resolution around 10 µm, 10 times better than the conventional US image. This unprecedented resolution has numerous potential applications. In particular, ULM would have a high impact in oncology because the vascular structure of early tumors, that are in the range of 5 µm to 80 µm, provides information that can help in the early diagnosis and monitor therapy responses. The huge potentiality of ULM has produced a lot of excitement and expectation worldwide, and it became a hot topic in the medical ultrasound community. Unfortunately, this technique is not yet clinically approved because it is still in development stages and presents many challenges that must be solved before translating it into clinics. The mainly limitations to overcome before translating ULM into clinics are the following: contrast-to-tissue ratio (CTR), signal-to-noise ratio (SNR), acquisition time, microbubble concentration, motion, lack of a gold standard, data overdose, exploitation of ultrafast scanner uncommon in the clinic and so on. Therefore, the aim of this study is to optimize the technique to localize microbubbles, and to explore the physics of microbubble to provide a change in the paradigm of the processes to produce ULM by combining the superresolution processing with a controlled exterior force impulse. To achieve this aim, first a numerical study will be performed to simulate microbubbles into small vessels and find a better way to localize them. The robustness of the algorithm will be increased to consider the non-linear interactions between MB and US and to consider the parabolic velocity profile of the vessel/tube. Up to date, the studies on microbubbles localization in ULM are after the image acquisition. There are no tissue/flow simulations of the behavior of microbubbles into the vessels with this technique. To perform the simulation, we will use a computer with excellent storage capacity and great velocity of processing together with the MATLAB algorithm: The Full Wave Solver. Second, an experimental study will be performed to generate super resolution images in a conventional phantom. The state of art will be applied with a phantom made by microtubes and microbubbles and then, the improvement of the aim 1 will be considered into this experiment. The complexity of the phantom will be increased from a medium with only water, then gelatine and finally, we will add some respiratory simulated movement. To the experimental setup we will use the Verasonics Vantage 128 research ultrasound scanner with different types of ultrasound transducers, microbubbles, microtubes, gelatine and the respiratory movement will be simulated with a vibration testing system (Shaker VTS-100). Finally, the physics of microbubble will be explored to provide a change in the paradigm of the processes to produce ULM and to detect the MB in a more direct way, without the need to perform a filter, like the signal value decomposition (SVD). We want to apply the an external know push pulse that will produce differences in the shear waves between the microbubbles and the tissue around and with simulations we will be able to know the response of microbubbles and it may help us to separate them from the tissue. Expected results: As result of this study, we expect to develop a numerical simulation to the ULM method, by considering interactions of the US with the tissue and fluid dynamics of the blood into the vessel and significantly optimize the techniques of MB detection. Besides that, this project will help to improve the first fully programmable ultrasound scanner system in Chile. Potentially, this would open new research areas at the country level, such as ultrasound imaging, ultrasound super-resolution imaging and soft tissue characterization.
      Co-Investigador/a
        • Abril 2021 - Marzo 2025
        En Ejecución

        Understanding and modeling visual numerosity perception

        [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""][/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
        Co-Investigador/a