Tagua Tagua Milenaria

Levantar el proyecto Tagua Tagua

Image Modeling and Processing for REmote SenSing in agriculture (IMPRESS)

The field of remote sensing is experiencing an unprecedented acceleration. Besides the large public programs such as Sentinel (see e.g. https://sentinel.esa.int/web/sentinel/missions/sentinel-2), private actors are creating fleets of micro-satellites capable of monitoring of the earth with daily revisits. This abundant and cheap data is creating opportunities for developing novel applications for the monitoring of industrial and agricultural activity. The automatic exploitation of this data is bound to specific application domain knowledge, which requires a mastery of advanced techniques such as computer vision and machine learning, as well as expert knowledge in the field of agriculture. To do this, the team must master earth observation satellites, be able to define the adequate mathematical detection theories, and build on a deep knowledge of satellite image processing, while also including expert knowledge in agriculture. This project aims at uniting competences across the fields of computer vision and machine learning, remote sensing to address emerging applications in agronomy. This project will in addition foster the creation of reproducible research by adopting a reproducible research methodology thus contributing the resulting algorithms to the journal Image Processing On-Line (IPOL). The IPOL journal is an initiative to establish a clear and reproducible state-of-the-art in the domain of image processing and computer vision.

Qué Comían, Dónde Vivían: Un Análisis Crítico de los Proxies no Morfológicos Utilizados en Paleoecología de Mamíferos Fósiles, Mediante el Estudio de las Variables Ambientales, Climáticas y

Fondecyt postdoctorado N° 3200806 Análisis de la dieta de los mamíferos extintos que vivieron en Chile Central durante el Pleistoceno

Transferencia y adopción de Tecnologías para la Gestión de Riesgo en el Proceso Productivo de la Cereza: hacia una agricultura de precisión para la Región de O’Higgins

Transferencia y adopción de Tecnologías para la Gestión de Riesgo en el Proceso Productivo de la Cereza: hacia una agricultura de precisión para la Región de O’Higgins

Nuevos métodos computacionales para caracterizar la arquitectura genética de reordenamientos genómicos complejos en cánceres Chilenos

El cáncer es la segunda causa de muerte en la población Chilena y se proyecta que en diez años será la primera causa de muerte en el país. A nivel regional, la región de O Higgins es la que presenta la mayor incidencia de muertes por cáncer. Actualmente, Chile invierte alrededor del 1% del PIB en atención y tratamiento del cáncer. Es indispensable y urgente comenzar a caracterizar molecularmente los cánceres prevalentes de la población Chilena pues esto permitirá integrar información que impactará las decisiones clínicas permitiendo la implementación de tratamientos específicos para los pacientes. El estudio genómico y molecular de sistemas biológicos complejos, como el desarrollo y progresión del cáncer, requieren del desarrollo de nuevos algoritmos y modelos teóricos para analizar e interpretar datos genómicos complejos (big- data). El principal objetivo del laboratorio de genómica computacional que instalaré en el instituto de ciencias de la ingeniería de la Universidad de O Higgins será desarrollar investigación de vanguardia entorno al diseño y aplicación de nuevos algoritmos y tecnologías ómicas para estudiar la arquitectura genómica de cánceres prevalentes de la población Chilena. La meta a largo plazo es trasladar estas tecnologías a la práctica clínica e impulsar la implementación de programas de medicina de precisión enfocados en el tratamiento y prevención del cáncer en nuestro país y región. Un segundo objetivo es impulsar y liderar investigación multidisciplinaria en temáticas de salud, agroindustria y minería, sectores críticos a desarrollar en la región de O’Higgins. Finalmente, el laboratorio de genómica computacional contribuirá a la formación de capital humano avanzado en áreas asociadas a la genómica, bioinformática y biología computacional.

Primeros pasos humanos en América del Sur: caminando entre Gonfoterios” – Chile

La Fundación financió las excavaciones arqueológicas y paleontológicas del yacimiento Tagua Tagua 3

Aprendizaje activo para algoritmos basados en bolsas de características con aplicaciones en textos e imágenes

Primeros pasos humanos en América del Sur: caminando entre Gonfoterios” – Chile

La Fundación Palarq financia las excavaciones arqueológicas y paleontológicas de Tagua Tagua 3

Construcción de modelos de desarrollo y madurez de cerezas mediante IA y visión computacional 3D a partir de imágenes hiperespectrales

El proyecto busca aunar competencias en visión computacional y fruticultura, para habilitar la construcción de modelos de crecimiento y madurez de cerezas a partir de modelos 3D construidos a partir de imágenes hiperespectrales. En particular se desarrollarán algoritmos de visión computacional 3D basados en representaciones neuronales implícitas para estimar el color y tamaño de frutos en cerezo durante el ciclo de crecimiento y cosecha, así como para estimar y correlacionar información hiperespectral con variables de calidad, como firmeza y grados brix de los frutos. A partir de estos algoritmos, se desarrollará una metodología para la construcción de modelos de crecimiento de los frutos que aporten a mejorar la calidad de la fruta fresca de exportación.
Es importante destacar que métodos de machine learning basados en representaciones neuronales implícitas están empezando a usarse ampliamente en distintos ámbitos de visión computacional, robótica y sensado remoto. Este tipo de representaciones está permitiendo abordar múltiples problemas en ambientes no controlados en la agricultura, de manera robusta. Por ejemplo, métodos basados en redes neuronales implícitas, tales como Neural Radiance Fields (NeRF) y Deep Signed Functions (DeepSDF) se están explorando para aplicaciones tales como reconstrucción 3D de frutas, árboles y huertos, habilitando aplicaciones de agricultura de precisión, como conteo de frutas y análisis fenológico. Para que el desarrollo de estas aplicaciones tenga un impacto en la agricultura, es necesario el desarrollo de modelos desde una mirada interdisciplinar, considerando tanto métodos del estado del arte de visión computacional y machine learning, así como un conocimiento profundo de fruticultura y en particular de fisiología de los árboles frutales caducos.
La calidad de la fruta de exportación es un pilar fundamental de nuestra fruticultura, y desde esa base, se considera importante el desarrollo de herramientas de monitoreo y diagnóstico que permitan predecir calidad y condición de la fruta oportunamente, y sobre todo bajo un escenario de cambio climático. En la temporada 2021-2022, un 20% de las cerezas presentaron serios problemas de calidad en los mercados de destino. De este volumen, un 28-47% se relacionaron con problemas de manejo en precosecha. En la agricultura convencional el uso de datos ha sido limitado a conocer procesos productivos puntuales tales como el monitoreo de variables ambientales o fisiológicas, las que han dado cuenta de un cierto estado del sistema de la planta de manera indirecta. Algunos avances en automatización en la toma de datos se han reportado para la aplicación de riego de precisión. Sin embargo, desde el mundo académico no existe un gran aprovechamiento de los avances en inteligencia artificial para la agronomía. En efecto, la predicción del comportamiento de variables productivas complejas, especialmente aquellas ligadas a la calidad de la fruta representan aún un desafío no resuelto en la industria nacional. En este sentido las técnicas de machine learning han sido utilizadas con éxito para predecir el rendimiento en diversas especies agrícolas, incluyendo frutales. No obstante, la calidad de fruta ha sido escasamente abordada, pese a existir capacidades teóricas. Debido a esto surge la necesidad del desarrollo de herramientas para construir modelos de crecimiento y madurez de cerezas, así como para que los productores puedan hacer seguimiento de su producción, y en particular de la calidad de ésta.
Con el objetivo de desarrollar una metodología para la construcción de modelos de desarrollo de cerezas mediante imágenes hiperespectral y modelos computacionales 3D de frutos, y así aportar a la mejora de la calidad de la producción de la cereza, el proyecto propone abordar tres grandes objetivos:
● Diseñar y capturar base de datos de imágenes, de variables agroclimáticas y mediciones fisiológicas.
● Desarrollar métodos de visión computacional y IA para la estimación de calibre, firmeza, color, y
grados brix de cerezas.
● Desarrollar, calibrar y validar modelos de crecimiento de cerezas a partir de los resultados obtenidos
con los algoritmos de visión computacional y IA desarrollados.
Para alcanzar estos objetivos, los investigadores convocados tienen un profundo conocimiento en las áreas complementarias desde la ingeniería (visión computacional, machine learning y robótica), y la fruticultura (fisiología de los árboles frutales caducos, sistemas de conducción, portainjertos, y gestión de huertos).

IEEE RAS Technical Education Program

Fondos para apoyar la realizacion de la Fourth Latin American Summer School on Robotics (LACORO 2025). La primera edición se realizó online en octubre de 2020; la segunda fue presencial en enero de 2023; la tercera 2024 en la Universidad de O’Higgins en Rancagua, Chile. La cuarta edición tendrá lugar en diciembre de 2025 en la Universidad de O’Higgins. https://lacoro.org/

Esta Escuela de Verano beneficiará principalmente a Estudiantes y Académicos de las Américas interesados en la Investigación en Inteligencia Artificial aplicada a la Robótica. Nuestro objetivo es fomentar la colaboración nacional y regional en esta área de investigación. Para la primera edición, alcanzamos 241 inscripciones para actividades online de todo el mundo, y la segunda versión tuvo 166 inscripciones para actividades presenciales en enero de 2023, principalmente de Chile, México, Argentina, Brasil y Uruguay.