Introduction: Ultrasound (US) exams are extensively used in Chile and around the world. This non-invasive imaging technique has many advantages when compared to magnetic resonance, computed tomography, and others because it has a low cost, it does not need ionizing radiation, and it is portable equipment. However, this technique has many challenges; the most known is the balance between resolution and penetration depth. Recently, in 2011, a new technique of US has been described: the ultrasound localization microscopy (ULM). However, it was only in 2015 that this technique gained knowledge with the publication of Errico et al. (2015) who described the ultrafast ultrasound localization microscopy applied in vivo in rats’ brain. ULM eliminates the challenge of the balance between resolution and penetration; but a new challenge emerges: the balance between localization precision of microbubble, microbubble concentration, and acquisition time. The microbubbles (MB) are the contrast agent for the US technique. They have 1-5 µm in diameter and act as a blinking source. These MB are injected into the bloodstream and flow into the circulatory system. ULM is also known as super-resolution imaging; it can produce vascular images with a resolution around 10 µm, 10 times better than the conventional US image. This unprecedented resolution has numerous potential applications. In particular, ULM would have a high impact in oncology because the vascular structure of early tumors, that are in the range of 5 µm to 80 µm, provides information that can help in the early diagnosis and monitor therapy responses. The huge potentiality of ULM has produced a lot of excitement and expectation worldwide, and it became a hot topic in the medical ultrasound community. Unfortunately, this technique is not yet clinically approved because it is still in development stages and presents many challenges that must be solved before translating it into clinics. The mainly limitations to overcome before translating ULM into clinics are the following: contrast-to-tissue ratio (CTR), signal-to-noise ratio (SNR), acquisition time, microbubble concentration, motion, lack of a gold standard, data overdose, exploitation of ultrafast scanner uncommon in the clinic and so on. Therefore, the aim of this study is to optimize the technique to localize microbubbles, and to explore the physics of microbubble to provide a change in the paradigm of the processes to produce ULM by combining the superresolution processing with a controlled exterior force impulse. To achieve this aim, first a numerical study will be performed to simulate microbubbles into small vessels and find a better way to localize them. The robustness of the algorithm will be increased to consider the non-linear interactions between MB and US and to consider the parabolic velocity profile of the vessel/tube. Up to date, the studies on microbubbles localization in ULM are after the image acquisition. There are no tissue/flow simulations of the behavior of microbubbles into the vessels with this technique. To perform the simulation, we will use a computer with excellent storage capacity and great velocity of processing together with the MATLAB algorithm: The Full Wave Solver. Second, an experimental study will be performed to generate super resolution images in a conventional phantom. The state of art will be applied with a phantom made by microtubes and microbubbles and then, the improvement of the aim 1 will be considered into this experiment. The complexity of the phantom will be increased from a medium with only water, then gelatine and finally, we will add some respiratory simulated movement. To the experimental setup we will use the Verasonics Vantage 128 research ultrasound scanner with different types of ultrasound transducers, microbubbles, microtubes, gelatine and the respiratory movement will be simulated with a vibration testing system (Shaker VTS-100). Finally, the physics of microbubble will be explored to provide a change in the paradigm of the processes to produce ULM and to detect the MB in a more direct way, without the need to perform a filter, like the signal value decomposition (SVD). We want to apply the an external know push pulse that will produce differences in the shear waves between the microbubbles and the tissue around and with simulations we will be able to know the response of microbubbles and it may help us to separate them from the tissue. Expected results: As result of this study, we expect to develop a numerical simulation to the ULM method, by considering interactions of the US with the tissue and fluid dynamics of the blood into the vessel and significantly optimize the techniques of MB detection. Besides that, this project will help to improve the first fully programmable ultrasound scanner system in Chile. Potentially, this would open new research areas at the country level, such as ultrasound imaging, ultrasound super-resolution imaging and soft tissue characterization.

El desarrollo de herramientas para el an ́alisis de funciones vitales a trav ́es de im ́agenes representa un campo de creciente inter ́es, especialmente para el estudio de marcadores tempranos de diversas patolog ́ıas, as ́ı como el desarrollo de aplicaciones diagn ́osticas a mediano plazo. En este contexto, el an ́alisis de la funci ́on vascular, a lo largo del ciclo vital, continua siendo un ́area con un alta demanda de nuevas tecnolog ́ıas, debido a su gran impacto a nivel de salud en la poblaci ́on. Esta propuesta busca generar una l ́ınea de investigaci ́on actualmente casi inexistente en Chile, las im ́agenes ultras ́onicas m ́edicas. En particular, nos gustar ́ıa introducir en Chile una t ́ecnica recientemente propuesta, denominada microscop ́ıa de localizaci ́on por ultrasonido (ULM), tambi ́en conocida como im ́agenes de su ́per- resoluci ́on. Esta t ́ecnica puede crear im ́agenes del sistema circulatoria con una resoluci ́on nunca antes vista, lo que permite visualizar vasos sangu ́ıneos de hasta 5μm. As ́ı, nuestra propuesta posee dos grandes objetivos. El primero es Optimizar y robusteces los procesos involucrados en el desarrollo de las im ́agenes de su ́per-resoluci ́on ultras ́onicas, esto a trav ́es de Optimizar los par ́ametros de adquisici ́on de datos y de procesamiento con el fin de robustecer la generaci ́on de este tipo de im ́agenes. Nuestro segundo objetivo es generar im ́agenes de su ́per- resoluci ́on de la red vascular interna de placenta humana ex-vivo y a buscar candidatos a marcadores a partir de estas im ́agenes.
La ecograf ́ıa convencional es ampliamente usada en Chile y el mundo. Es preferida entre otras modalidades de im ́agenes (MRI, PET, TC) debido a su portabilidad, bajo costo, naturaleza no invasiva y a que utiliza radiaci ́on no ionizante, especialmente en condiciones como el embarazo, o en pacientes con manejo farmacol ́ogico complejo, entre otras. Recientemente, se han desarrollado nuevas modalidades de im ́agenes ultras ́onicas, propiciadas por la mejora en la industria de los semiconductores, lo que ha permitido un incremento en la capacidad de computo de los esc ́aneres ultraso ́nicos y en el nu ́mero de elementos piezoel ́ectrico de los transductores ultras ́onicos, generando un aumento significativo en la versatilidad y calidad de estas tecnolog ́ıas. Dentro de estas nuevas t ́ecnicas encontramos la microscop ́ıa de localizaci ́on por ultrasonido (ULM) o su ́per-resoluci ́on ultras ́onica. Esta revolucionaria t ́ecnica es capaz de superar el l ́ımite de difracci ́on y producir una resoluci ́on diez veces mayor en comparaci ́on con la ecograf ́ıa convencional. Puede ser usada para producir ima ́genes vasculares con una resoluci ́on sin precedentes de hasta 5 μm permitiendo as ́ı la visualizaci ́on de vasos sangu ́ıneos microsc ́opicos que hasta ahora no pueden ser vistos por ninguna t ́ecnica disponible cl ́ınicamente. ULM utiliza microburbujas (MBs) de gas (1 μm de di ́ametro) que actu ́an como fuentes acu ́sticas estoc ́asticas. Las MBs se inyectan en el torrente sangu ́ıneo y fluyen dentro del sistema circulatorio, donde aparecen y desaparecen de la regi ́on de inter ́es, lo que permite su localizaci ́on. Luego, la imagen de su ́per-resoluci ́on se construye a partir de la acumulaci ́on de cientos de miles de MBs localizadas.
Actualmente, la mayor parte de la investigaci ́on en ULM se realiza desde el punto de vista de las ciencias de la ingenier ́ıa, que deja a veces a la ciencia fundamental como un aspecto secundario. Nuestro equipo, debido al car ́acter transdisciplinario de esta propuesta, esta constituido por investigadores de el ́area de la ingenier ́ıa, f ́ısica, biomedicina y matem ́aticas. Basados en las fortalezas de este equipo, proponemos estudiar esta tecnolog ́ıa desde la perspectiva de la ciencia fundamental, buscando limitaciones en ella, y estableciendo los mecanismos fisiol ́ogicos que se manifiestan a nivel de las im ́agenes de su ́per-resoluci ́on, permitiendo superar sus actuales limitaciones y potenciando su posible aplicaci ́on en el ́area m ́edica. En este contexto buscaremos como segundo objetivo el visualizar la microvasculatura de muestras de placenta ex-vivo, las que ser ́an donadas voluntariamente por pacientes del hospital regional de Rancagua, y complementar estas observaciones con par ́ametros funcionales y moleculares, con el fin de modelar desde distintas perspectivas nuevos marcadores de funci ́on vascular.
Usualmente para lograr el avance en le desarrollo de este tipo de t ́ecnicas, se requieren condiciones experimentales altamente controlables, las que se logran utilizando sistemas que imitan el tejido en cuesti ́on, el que en nuestro caso es el sistema vascular. Para esto, se utilizan mayormente experimentos in-vitro fabricados a partir de microtubos de 50−150 μm de di ́ametro interno. Sin embargo, existe una gran diferencia entre las propiedades de este tipo de sistemas y las propiedades acu ́sticas de tejido in-vivo humano. Lo que requiere una gran cantidad de iteraciones experimentales retazando el desarrollo. As ́ı, al utilizar tejido humano ex-vivo pretendemos aumentar significativamente la velocidad de la curva de aprendizaje y por consiguiente lograr im ́agenes de su ́per-resoluci ́on humano compatibles dentro de la duraci ́on de esta propuesta. As ́ı mismo, el desarrollo de esta propuesta en un modelo vascular como la placenta humana representa un clara oportunidad para aportar en un ́area actualmente limitada en su capacidad diagn ́ostica, lo que restringe la aplicaci ́on de intervenciones efectivas durante el embarazo, con consecuencias en la salud de la madre y su progenie.
Como proyecciones de este esquema colaborativo esperamos tener acceso a par ́ametros biol ́ogicos con los cuales generar nuevas formas de diagn ́ostico de alta precisi ́on, en especial a nivel de las estructuras involucradas, en primera instancia, con el desarrollo de alteraciones vasculares (i.e. vasos de pequen ̃o calibre). Con ello buscamos desarrollar un tecnolog ́ıa con base cient ́ıfica a trav ́es de la cual ser ́a posible obtener indicadores de mayor sensibilidad y especificidad para variadas condiciones, enfermedades o s ́ındromes, relacionados con la funci ́on vascular.

Fondecyt de postdoctorado 3170706. Uso de modelos de distribución para caracterizar la biodiversidad de megafauna extinta e identificar rutas de migración de cazadores recolectores en Sudamérica.

Objetivos:
Caso de estudio continental
1) Caracterizar y reconocer las áreas de mayor biodiversidad de megafauna extinta (mamíferos de >44 kg de masa corporal) para el periodo de transición Pleistoceno-Holoceno en Sudamérica.
2) Identificar si dichas áreas corresponden a posibles corredores o rutas utilizadas por los primeros cazadores-recolectores que colonizaron el continente durante el Pleistoceno tardío.
Caso de estudio particular: Desierto de Atacama
3) Caracterizar la distribución de especies de megafauna para para el Desierto de Atacama (y para los Andes Centrales), tomando en cuenta el rico registro paleoclimático de la región como variable explicativa de la presencia de ciertas especies de megafauna en este sector.
4) Analizar si dicha distribución podría explicar el uso por parte de los primeros humanos de distintas rutas de migración en el sector (costeras, alto andinas y a través del desierto).

Metodología:
Generar Modelos de Distribución de Especies a nivel continental para los distintos taxa de megafauna extinta sudamericana que existieron durante la transición Pleistoceno-Holoceno. Estos modelos se generarán utilizando la locación geográfica e información cronológica del rico registro fósil de megafauna existente para Sudamérica, junto con información de las condiciones ambientales extraída de modelos climáticos generados para distintos momentos de la transición Pleistoceno-Holoceno. A partir de los Modelos de Distribución de Especies se identificarán las áreas de mayor biodiversidad (aquellas con la mayor cantidad de taxa) las cuales se comprarán con la distribución geográfica de sitios arqueológicos tempranos. Todo esto con la finalidad de identificar posibles rutas de migración humana hacia el continente.
Para el caso del Desierto de Atacama (y de los Andes centrales) se aplicará la misma metodología descrita anteriormente pero haciendo uso del rico registro paleclimático existente para la región. Además, utilizaré los modelos para estimar la distribución pasada de especies actuales que habitan el sector desde el Pleistoceno tardío. Los Modelos de Distribución de Especies resultantes se compraran con la distribución geográfica de sitios arqueológicos para intentar reconocer las rutas migratorias usadas por los primeros humanos que colonizaban este ambiente extremo. Con la idea de obtener mayor información acerca de la megafauna extinta que habitó el Desierto de Atacama, me uniré a un grupo de investigadores en labores de rescate y análisis de sitios fósiles recientemente encontrados. Mi propósito es aportar con mi conocimiento de datación de megafauna extinta por radiocarbono y obtener más datos que mejoren la calidad de los modelos planeados.

Resultados esperados:
Se espera que la superposición de los modelos de distribución de megafauna extinta para la transición Pleistoceno-Holoceno muestre las áreas que probablemente exhibían la mayor biodiversidad para este periodo. Al comprar dichas áreas con la locación geográfica de los sitios tempranos de colonización humana en Sudamérica, se espera reconocer si las rutas de migración escogidas por los primeros cazadores-recolectores habrían sido determinadas por la presencia de mayor o menor biodiversidad de megafauna.
Para el caso del Desierto de Atacama y los Andes Centrales, se espera obtener la probable distribución de las especies de megafauna que habitaban el área de manera más detallada, dado el uso de registros paleoclimáticos específicos para la zona como variables predictivas.
Se espera que dichos Modelos de Distribución de Especies de megafauna permitan comprender e identificar la elección de rutas migratorias por los primeros cazadores-recolectores que habitaron estas regiones en particular.

Fondecyt 1201786 Reconstructing mobility, settlement, technology, and ecosystem services-use in the Atacama Desert by the end of the Pleistocene

Proyecto que buscaba indagar en la realcion entre los primeros pobladores del desierto de atacama y su entorno a finales del Pleistoceno (12.000 años atrás).

Fondecyt de Iniciación 11230891 Conservation paleobiology in central Chile: merging the fossil record and ecological modeling to inform the present and future of an endangered ecosystem.

Conservation paleobiology deals with the use and application of paleontological data to the conservation of biodiversity. It implies the study of the circumstances driving species to the brink of extinction, to go extinct, or survive through the changes. In the present scenario of Global Change, this discipline seems useful as it can inform about the paths that species can undergo at present and in the near future. Particularly important to inform the state and faith of present-day ecosystems are those studies dealing with the last glacial-interglacial transition, since they show the changes faced by many still extant species under a scenario of global warming and an increasing human population. A close parallel to today’s threats to biodiversity. The present proposal will use the rich vertebrate fossil record from the site of Tagua Tagua 3 (TT3) in the Antiguo Lago de Tagua Tagua (ALTT), Region de O’Higgins, to investigate changes in biological communities through time. This record spans from the late Pleistocene (~13 kyr BP) to the mid Holocene (~6 kyr BP), presenting a continuous faunal sequence with extinct megafauna in its older component and extant vertebrates towards the Holocene. The record also attests the arrival and establishment of humans, as well as the occurrence of important changes in vegetation and climate. All this together makes of TT3 a unique record for central Chile, that offers the opportunity to make an adequate reconstruction of the recent past of a greatly endangered natural system. The ecosystem-through-time reconstruction and analysis includes the following objectives: (1) a comprehensive study of the fossil record to identify what, how many, and how abundant were the different species at different moments through time in the ALTT, with a particular emphasis on vertebrates; (2) to see how the communities reconstructed from the fossil record behave in moments of major environmental changes, including anthropogenic drivers of change, extinction of megafauna, and vegetation changes; (3) use food web modeling for analyzing the causes and consequences of the changes in these communities. This aims to pursue models that can integrate the fossil record and proxies of environmental change to understand the vulnerabilities to which these communities were exposed at different moments through time; (4) work in characterizing the present-day state of the vertebrate community in the area near the ALTT, aiming to build a modern picture in terms of community composition as well as in food web structure, to compare with what is revealed, and predicted, by the fossil record and associated models. The methodology to accomplishing these objectives includes: (1) fossil preparation, taxonomic identification, and quantification (MNI, NISP) for each level excavated in TT3; (2) to compare the faunal communities inferred from the fossil record to the available record of environmental changes through time (vegetation, climate, human arrival); (3) to stablish trophic relationships among the different species identified in the fossil record (using literature, stable isotope analyses results and zooarchaeological studies); this information will be used to implement food web models that explore the stability and complexity of different vertebrate communities through time and during times of particular important changes such as megafaunal extinctions, human arrival a changes in vegetation; (4) current species occurrences in the area will be inferred from the literature, open databases (GBIF) and complemented using species distributions models along with field species surveys; this information will be used to understand the current species composition of the area and to model current trophic interactions to compare with the ones inferred from the fossil record.
Some expected results are a thorough characterization of community composition and food web topology through time, particularly at moments of important environmental changes. The arrival of humans during the late Pleistocene and the trophic connections generated with the fauna present should have an effect in the topology and stability of the food web. At the same time, the inclusion of a dynamic bottom-up controlled change (forested vs. shrubland) will provide important insights on how the food web and the vertebrate communities changed in moments of major vegetation changes. It is expected that some moments in the past will parallel the present-day conditions of biological systems from central Chile, providing clues on how to face the current environmental changes that endanger these ecosystems.

Networked control of hybrid systems by semidefinite programming with applications in industry 4.0

Proyecto internacional de colaboración que se enfoca en el análisis de estabilidad y diseño de sistemas de control y estimación para sistemas híbridos que operan en redes de industria 4.0. El objetivo es desarrollar métodos y algritmos que puedan lidiar con desafíos como detección de fallas, monitoreo, efectos de muestreo, cuantización, limitaciones de ancho de banda y magnitud de señales, presencia de incertezas, retardos, no linealidades y pérdidas de paquetes. Para obtener soluciones no conservativas, se considera el uso de herramientas de programación semidefinida.

Control distribuido de sistemas de conversión emergentes para una red eléctrica más resiliente

Plataforma experimental de control distribuido de módulos de potencia
Consiste en diversos módulos de baja potencia que pueden configurarse e interconectarse para implementar variadas topologías emergentes de sistemas eléctricos y topologías de conversión como: microrredes, enlaces de alto voltaje en corriente continua (HVDC), convertidores modulares multinivel (MMC), sistemas de baterías (BESS), cargadores rápidos, entre otros. Cada módulo de potencia posee una unidad de control propia coordinada por una unidad central, lo que permite implementar esquemas de control distribuido. Además, la plataforma contempla una etapa de amplificación de potencia trifásica, que permite generar físicamente los voltajes y corrientes de un punto común de acoplamiento con una red eléctrica emulada en tiempo-real. Esto permite estudiar la interacción de la red emulada con los sistemas eléctricos y las topologías de conversión emergentes descritas anteriormente. Por consiguiente, esta plataforma agiliza el prototipado, tanto en hardware de potencia como de control, permitiendo la validación experimental de estrategias de control distribuido que, a diferencia del control centralizado (tradicionalmente utilizado en la academia e industria), presenta ventajas que son de utilidad para mejorar la resiliencia de los sistemas eléctricos, como son: mejor confiabilidad, flexibilidad, escalabilidad, operación plug-and-play y tolerancia a fallas de un solo punto.