Ordenar Resultados
Filtrar por autor
  • Filtrar por Categoría
    Filtrar por tema de intéres
    • PYT-2026-186
    • Abril 2026 - Marzo 2029
    AdjudicadoFundación para la Innovación Agraria - FIA

    Obtención de ingredientes funcionales desde pulpa de sandía residual post cosecha para su uso en la industria de alimentos funcionales y en la agricultura

    [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]La producción de semillas de sandía en Chile es una de las que genera mayores volúmenes (12,5%) y mejores precios (26 MM U$FOB) de exportación respecto del total de semillas exportadas. En los últimos 5 años su exportación ha aumentado considerablemente ocupando el segundo lugar en este mercado. Derivado del procesamiento de los frutos se genera un alto porcentaje de pulpa y cáscara; residuos no aprovechables como subproducto para otras industrias como cuarta gama y/o farmacéutica. El elevado contenido antioxidantes de la sandía representa una oportunidad para su extracción y uso en otras industrias. La solución innovadora permitirá reutilizar grandes volúmenes de la pulpa y cáscara, mitigando su disposición inadecuada y mejorando prácticas agrícolas y biotecnológicas. El objetivo de la propuesta es desarrollar un paquete tecnológico consistente en tres aplicaciones que permiten valorizar los residuos de cáscara y pulpa de sandía para la producción de nutracéuticos, bioenmienda de suelos provenientes de relaves mineros, y sustrato para el crecimiento de microorganismos. El proyecto busca generar innovaciones que promuevan la transformación de los residuos agrícolas, proyectando así nuevos negocios para los productores hortícolas en la industria de los alimentos dando valor agregado a los residuos derivados del procesamiento de semillas. Los resultados esperados de esta iniciativa son: Portafolio de al menos 2 ingredientes funcionales (Licopeno y Citrulina) desarrollados y caracterizados; validación técnica del ingrediente principal (Licopeno o citrulina) con actividad antioxidante; bioenmienda validada en un entorno operacional (campo), alcanzando el nivel de madurez tecnológica TRL7; análisis de mercado robusto que incluye un plan de escalamiento técnico de la bioenmienda; medio de cultivo validado en un entorno operacional (empresas), alcanzando el nivel de madurez tecnológica TRL7; y análisis de mercado robusto que incluye un plan de escalamiento técnico.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
    Responsable Alterno
    • 11261116
    • Abril 2026 - Marzo 2029
    AdjudicadoAgencia Nacional de Investigación y Desarrollo - ANID

    Cooperative control of intelligent agents using reinforcement learning to support the implementation of AC/DC multi-microgrids in the energy industry, from regions in Chile to the rest of the world.

    [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]This project will address the implementation of distributed controllers in intelligent agents within AC/DC electrical microgrids. Specifically, this project will address open issues in the distributed control literature for microgrids; these include optimal parameter tuning and resilience to communications disturbances such as transport delays, packet loss, and communication failures due to cyberattacks. All of these are important components that prevent the proliferation of microgrid projects throughout the country and the world. Microgrids have the potential to improve the energy management of renewable resources and the resilience of current and future electrical systems. Furthermore, they aid in decarbonization and benefit the energization of isolated communities and national industries. Based on the above, the main objective of this research is to formulate, implement, and validate distributed intelligent controllers, using reinforcement learning, in agents that comprise interconnected AC/DC microgrids, in order to achieve optimal operation concerning available energy resources despite disturbances and failures in communication channels. To achieve this objective, the following specific objectives are specified: (i) investigate the state of the art in the use of reinforcement learning algorithms in cooperative multi-agent system control and their application to microgrids; (ii) design a deep reinforcement learning algorithm to auxiliary control an ILC of a hybrid AC/DC microgrid with communication loss and variable time delays; (iii) design a distributed controller with parameter and structure adjustment capability through deep reinforcement learning algorithms for the agents of an AC/DC multi-microgrid with communication losses and variable time delay; (iv) design a robust distributed controller through deep reinforcement learning algorithms that allows agents in an AC/DC multi-microgrid to be resilient to heterogeneous and variable transport delays, loss of data packets, and DoS cyber-attacks; (v) build a prototyping platform for multi-agent-based intelligent agent control schemes with digital twin co-simulation; (vi) implement and validate the proposed reinforcement learning controllers in an AC/DC multi-microgrid experimental setup.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
    Investigador/a Responsable
    • 40074458-0
    • Marzo 2026 - Marzo 2028
    AdjudicadoGobierno Regional - GORE

    Rutas de turismo paleoarqueológicas para la Región de O`higgins

    [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]Implementación de una ruta de turismo arqueológica y paleontológica que abarque tres comunas: San Vicente de Tagua Tagua, Navidad y San Fernando.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
    Investigador/a Responsable
    • 40074458-0
    • Marzo 2026 - Marzo 2028
    AdjudicadoGobierno Regional - GORE

    Rutas de turismo paleoarqueológicas para la Región de O`higgins

    [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]Implementación de una ruta de turismo arqueológica y paleontológica que abarque tres comunas: San Vicente de Tagua Tagua, Navidad y San Fernando.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
    Investigador/a Responsable
    • Marzo 2026
    AdjudicadoUniversidad de O'Higgins

    From Physics to Agricultural Practice: The impact of raindrops on Pseudomonas syringae pv syringae inoculated on sweet cherry leaves

    [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]We investigate how rain-mediated mechanical processes influence the spread of pathogens under field conditions. While it is well established that water is a primary vector for bacterial movement between plants, few studies have examined the detailed hydrodynamic mechanisms involved, particularly in the context of leaf morphology, surface roughness, and microbial adhesion. This gap restricts our ability to develop predictive models and preventive strategies for managing rain-borne plant diseases. The project's general objective is to elucidate the coupling between raindrop impact dynamics and bacterial dispersal patterns on cherry leaves under realistic rainfall conditions. Specifically, it aims to (i) characterize the mechanical interaction between raindrops and cherry leaves using high-speed imaging and physical analysis to observe the dispersal patterns of Pseudomonas syringae pv. syringae (Pss). (ii) evaluate the spatial dispersal of Pss inoculated artificially onto cherry leaves at different concentrations under controlled temperature and rainfall conditions, and (iii) develop an integrative predictive model based on physical variables of rain-leaf interaction and experimentally measured environmental conditions to estimate the dispersal and severity of Pss attack. Methodologically, our study combines high-speed photography, controlled laboratory rain simulations, and microbiological assays. We will perform experiments in a custom-designed rainfall simulator allowing precise control of droplet size, velocity, and impact angle. Bacterial suspensions of Pseudomonas syringae—a pathogen commonly associated with cherry canker—will be applied to leaves under standardized conditions. The dynamics of droplet impact, splash formation, and secondary droplet ejection will be recorded at high temporal resolution to quantify mechanical energy transfer and spatial distribution of splashed particles. Parallel microbiological analyses will determine bacterial survival rates, concentration profiles, and the extent of leaf-to-leaf contamination. We will integrate these results into a predictive model linking rainfall characteristics to potential bacterial dispersal distances and infection probabilities. We aim to enhance our understanding of the biophysical coupling between rainfall and pathogen mobility, establish a set of empirical relationships for disease spread modeling, and provide practical recommendations for orchard management under varying climatic scenarios. By bridging the gap between plant pathology and fluid mechanics, this project will provide a mechanistic foundation for reducing rain-mediated bacterial diseases in high-value fruit crops, contributing to the sustainability and resilience of O'Higgins agriculture.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
    Investigador/a Responsable
    • Marzo 2026
    AdjudicadoUniversidad de O'Higgins

    From Physics to Agricultural Practice: The impact of raindrops on Pseudomonas syringae pv syringae inoculated on sweet cherry leaves

    [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]We investigate how rain-mediated mechanical processes influence the spread of pathogens under field conditions. While it is well established that water is a primary vector for bacterial movement between plants, few studies have examined the detailed hydrodynamic mechanisms involved, particularly in the context of leaf morphology, surface roughness, and microbial adhesion. This gap restricts our ability to develop predictive models and preventive strategies for managing rain-borne plant diseases. The project's general objective is to elucidate the coupling between raindrop impact dynamics and bacterial dispersal patterns on cherry leaves under realistic rainfall conditions. Specifically, it aims to (i) characterize the mechanical interaction between raindrops and cherry leaves using high-speed imaging and physical analysis to observe the dispersal patterns of Pseudomonas syringae pv. syringae (Pss). (ii) evaluate the spatial dispersal of Pss inoculated artificially onto cherry leaves at different concentrations under controlled temperature and rainfall conditions, and (iii) develop an integrative predictive model based on physical variables of rain-leaf interaction and experimentally measured environmental conditions to estimate the dispersal and severity of Pss attack. Methodologically, our study combines high-speed photography, controlled laboratory rain simulations, and microbiological assays. We will perform experiments in a custom-designed rainfall simulator allowing precise control of droplet size, velocity, and impact angle. Bacterial suspensions of Pseudomonas syringae—a pathogen commonly associated with cherry canker—will be applied to leaves under standardized conditions. The dynamics of droplet impact, splash formation, and secondary droplet ejection will be recorded at high temporal resolution to quantify mechanical energy transfer and spatial distribution of splashed particles. Parallel microbiological analyses will determine bacterial survival rates, concentration profiles, and the extent of leaf-to-leaf contamination. We will integrate these results into a predictive model linking rainfall characteristics to potential bacterial dispersal distances and infection probabilities. We aim to enhance our understanding of the biophysical coupling between rainfall and pathogen mobility, establish a set of empirical relationships for disease spread modeling, and provide practical recommendations for orchard management under varying climatic scenarios. By bridging the gap between plant pathology and fluid mechanics, this project will provide a mechanistic foundation for reducing rain-mediated bacterial diseases in high-value fruit crops, contributing to the sustainability and resilience of O'Higgins agriculture.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
    Investigador/a Responsable
    • Diciembre 2025 - Diciembre 2025
    En EjecuciónIEEE RAS

    [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]Fondos para apoyar la realizacion de la Fourth Latin American Summer School on Robotics (LACORO 2025). La primera edición se realizó online en octubre de 2020; la segunda fue presencial en enero de 2023; la tercera 2024 en la Universidad de O'Higgins en Rancagua, Chile. La cuarta edición tendrá lugar en diciembre de 2025 en la Universidad de O'Higgins. https://lacoro.org/ Esta Escuela de Verano beneficiará principalmente a Estudiantes y Académicos de las Américas interesados en la Investigación en Inteligencia Artificial aplicada a la Robótica. Nuestro objetivo es fomentar la colaboración nacional y regional en esta área de investigación. Para la primera edición, alcanzamos 241 inscripciones para actividades online de todo el mundo, y la segunda versión tuvo 166 inscripciones para actividades presenciales en enero de 2023, principalmente de Chile, México, Argentina, Brasil y Uruguay.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
    Investigador/a Responsable
    • Diciembre 2025 - Diciembre 2025
    En EjecuciónIEEE RAS

    [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]Fondos para apoyar la realizacion de la Fourth Latin American Summer School on Robotics (LACORO 2025). La primera edición se realizó online en octubre de 2020; la segunda fue presencial en enero de 2023; la tercera 2024 en la Universidad de O'Higgins en Rancagua, Chile. La cuarta edición tendrá lugar en diciembre de 2025 en la Universidad de O'Higgins. https://lacoro.org/ Esta Escuela de Verano beneficiará principalmente a Estudiantes y Académicos de las Américas interesados en la Investigación en Inteligencia Artificial aplicada a la Robótica. Nuestro objetivo es fomentar la colaboración nacional y regional en esta área de investigación. Para la primera edición, alcanzamos 241 inscripciones para actividades online de todo el mundo, y la segunda versión tuvo 166 inscripciones para actividades presenciales en enero de 2023, principalmente de Chile, México, Argentina, Brasil y Uruguay.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
    Investigador/a Responsable
    • Diciembre 2025 - Diciembre 2025
    En EjecuciónIEEE RAS

    [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]Fondos para apoyar la realizacion de la Fourth Latin American Summer School on Robotics (LACORO 2025). La primera edición se realizó online en octubre de 2020; la segunda fue presencial en enero de 2023; la tercera 2024 en la Universidad de O'Higgins en Rancagua, Chile. La cuarta edición tendrá lugar en diciembre de 2025 en la Universidad de O'Higgins. https://lacoro.org/ Esta Escuela de Verano beneficiará principalmente a Estudiantes y Académicos de las Américas interesados en la Investigación en Inteligencia Artificial aplicada a la Robótica. Nuestro objetivo es fomentar la colaboración nacional y regional en esta área de investigación. Para la primera edición, alcanzamos 241 inscripciones para actividades online de todo el mundo, y la segunda versión tuvo 166 inscripciones para actividades presenciales en enero de 2023, principalmente de Chile, México, Argentina, Brasil y Uruguay.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
    Co-Investigador/a
    • Octubre 2025
    AdjudicadoAgencia Nacional de Investigación y Desarrollo - ANID

    Cambio climático y economía: análisis de riesgos y soluciones para sectores estratégicos

    [vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]El proyecto “Cambio climático y economía: análisis de riesgos y soluciones para sectores estratégicos” busca fortalecer las capacidades regionales de la Macrozona para enfrentar los crecientes desafíos del cambio climático mediante la creación de una red internacional de cooperación científica. La iniciativa se estructura en torno a tres ejes: la identificación y cuantificación de riesgos climáticos a nivel subregional, utilizando herramientas como imágenes satelitales, modelos de teoría de juegos y simulaciones; el análisis de cómo hogares, productores y gobiernos ajustan sus decisiones ; y el fortalecimiento de capacidades mediante pasantías internacionales, talleres, formación de estudiantes y la publicación de resultados. Un componente central del proyecto es el intercambio de experiencias entre países en desarrollo, México, Brasil y Chile, que comparten desafíos estructurales como alta informalidad laboral, barreras en el acceso al crédito y vulnerabilidad territorial frente al cambio climático. Además, el proyecto pone un fuerte énfasis en la formación de capital humano, incorporando a tesistas de pregrado y posgrado en todas las etapas de investigación. Ellas/os participarán en actividades clave como diseño de modelos, recolección y análisis de datos, y redacción de informes, fortaleciendo sus competencias técnicas y su vinculación con redes internacionales. Se ofrecerán también un workshop y un taller, orientado a fortalecer las capacidades en temas de economía del cambio climático. Participan la Universidad de O’Higgins y la Universidad de los Andes de Chile; y como socios internacionales el Banco Central de México y la Fundación Getulio Vargas de Brasil. Esta colaboración busca generar evidencia territorialmente situada para el diseño de planes de resiliencia agrícola, descentralizar la formación científica en Chile y consolidar una red duradera de investigación aplicada en economía del cambio climático con impacto regional y latinoamericano.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
    Co-Investigador/a