Ordenar Resultados
Filtrar por autor
  • Filtrar por Categoría
    Filtrar por tema de intéres
    • Diciembre 2021
    Proyecto Adjudicado

    El desarrollo de herramientas para el an ́alisis de funciones vitales a trav ́es de im ́agenes representa un campo de creciente inter ́es, especialmente para el estudio de marcadores tempranos de diversas patolog ́ıas, as ́ı como el desarrollo de aplicaciones diagn ́osticas a mediano plazo. En este contexto, el an ́alisis de la funci ́on vascular, a lo largo del ciclo vital, continua siendo un ́area con un alta demanda de nuevas tecnolog ́ıas, debido a su gran impacto a nivel de salud en la poblaci ́on. Esta propuesta busca generar una l ́ınea de investigaci ́on actualmente casi inexistente en Chile, las im ́agenes ultras ́onicas m ́edicas. En particular, nos gustar ́ıa introducir en Chile una t ́ecnica recientemente propuesta, denominada microscop ́ıa de localizaci ́on por ultrasonido (ULM), tambi ́en conocida como im ́agenes de su ́per- resoluci ́on. Esta t ́ecnica puede crear im ́agenes del sistema circulatoria con una resoluci ́on nunca antes vista, lo que permite visualizar vasos sangu ́ıneos de hasta 5μm. As ́ı, nuestra propuesta posee dos grandes objetivos. El primero es Optimizar y robusteces los procesos involucrados en el desarrollo de las im ́agenes de su ́per-resoluci ́on ultras ́onicas, esto a trav ́es de Optimizar los par ́ametros de adquisici ́on de datos y de procesamiento con el fin de robustecer la generaci ́on de este tipo de im ́agenes. Nuestro segundo objetivo es generar im ́agenes de su ́per- resoluci ́on de la red vascular interna de placenta humana ex-vivo y a buscar candidatos a marcadores a partir de estas im ́agenes. La ecograf ́ıa convencional es ampliamente usada en Chile y el mundo. Es preferida entre otras modalidades de im ́agenes (MRI, PET, TC) debido a su portabilidad, bajo costo, naturaleza no invasiva y a que utiliza radiaci ́on no ionizante, especialmente en condiciones como el embarazo, o en pacientes con manejo farmacol ́ogico complejo, entre otras. Recientemente, se han desarrollado nuevas modalidades de im ́agenes ultras ́onicas, propiciadas por la mejora en la industria de los semiconductores, lo que ha permitido un incremento en la capacidad de computo de los esc ́aneres ultraso ́nicos y en el nu ́mero de elementos piezoel ́ectrico de los transductores ultras ́onicos, generando un aumento significativo en la versatilidad y calidad de estas tecnolog ́ıas. Dentro de estas nuevas t ́ecnicas encontramos la microscop ́ıa de localizaci ́on por ultrasonido (ULM) o su ́per-resoluci ́on ultras ́onica. Esta revolucionaria t ́ecnica es capaz de superar el l ́ımite de difracci ́on y producir una resoluci ́on diez veces mayor en comparaci ́on con la ecograf ́ıa convencional. Puede ser usada para producir ima ́genes vasculares con una resoluci ́on sin precedentes de hasta 5 μm permitiendo as ́ı la visualizaci ́on de vasos sangu ́ıneos microsc ́opicos que hasta ahora no pueden ser vistos por ninguna t ́ecnica disponible cl ́ınicamente. ULM utiliza microburbujas (MBs) de gas (1 μm de di ́ametro) que actu ́an como fuentes acu ́sticas estoc ́asticas. Las MBs se inyectan en el torrente sangu ́ıneo y fluyen dentro del sistema circulatorio, donde aparecen y desaparecen de la regi ́on de inter ́es, lo que permite su localizaci ́on. Luego, la imagen de su ́per-resoluci ́on se construye a partir de la acumulaci ́on de cientos de miles de MBs localizadas. Actualmente, la mayor parte de la investigaci ́on en ULM se realiza desde el punto de vista de las ciencias de la ingenier ́ıa, que deja a veces a la ciencia fundamental como un aspecto secundario. Nuestro equipo, debido al car ́acter transdisciplinario de esta propuesta, esta constituido por investigadores de el ́area de la ingenier ́ıa, f ́ısica, biomedicina y matem ́aticas. Basados en las fortalezas de este equipo, proponemos estudiar esta tecnolog ́ıa desde la perspectiva de la ciencia fundamental, buscando limitaciones en ella, y estableciendo los mecanismos fisiol ́ogicos que se manifiestan a nivel de las im ́agenes de su ́per-resoluci ́on, permitiendo superar sus actuales limitaciones y potenciando su posible aplicaci ́on en el ́area m ́edica. En este contexto buscaremos como segundo objetivo el visualizar la microvasculatura de muestras de placenta ex-vivo, las que ser ́an donadas voluntariamente por pacientes del hospital regional de Rancagua, y complementar estas observaciones con par ́ametros funcionales y moleculares, con el fin de modelar desde distintas perspectivas nuevos marcadores de funci ́on vascular. Usualmente para lograr el avance en le desarrollo de este tipo de t ́ecnicas, se requieren condiciones experimentales altamente controlables, las que se logran utilizando sistemas que imitan el tejido en cuesti ́on, el que en nuestro caso es el sistema vascular. Para esto, se utilizan mayormente experimentos in-vitro fabricados a partir de microtubos de 50−150 μm de di ́ametro interno. Sin embargo, existe una gran diferencia entre las propiedades de este tipo de sistemas y las propiedades acu ́sticas de tejido in-vivo humano. Lo que requiere una gran cantidad de iteraciones experimentales retazando el desarrollo. As ́ı, al utilizar tejido humano ex-vivo pretendemos aumentar significativamente la velocidad de la curva de aprendizaje y por consiguiente lograr im ́agenes de su ́per-resoluci ́on humano compatibles dentro de la duraci ́on de esta propuesta. As ́ı mismo, el desarrollo de esta propuesta en un modelo vascular como la placenta humana representa un clara oportunidad para aportar en un ́area actualmente limitada en su capacidad diagn ́ostica, lo que restringe la aplicaci ́on de intervenciones efectivas durante el embarazo, con consecuencias en la salud de la madre y su progenie. Como proyecciones de este esquema colaborativo esperamos tener acceso a par ́ametros biol ́ogicos con los cuales generar nuevas formas de diagn ́ostico de alta precisi ́on, en especial a nivel de las estructuras involucradas, en primera instancia, con el desarrollo de alteraciones vasculares (i.e. vasos de pequen ̃o calibre). Con ello buscamos desarrollar un tecnolog ́ıa con base cient ́ıfica a trav ́es de la cual ser ́a posible obtener indicadores de mayor sensibilidad y especificidad para variadas condiciones, enfermedades o s ́ındromes, relacionados con la funci ́on vascular.
    Co-Investigador/a
    • Diciembre 2021
    Proyecto Adjudicado

    Cuando pensamos en científicos y su aporte a la ciencia, generalmente reconocemos un estereotipo masculino, acompañado de un desconocimiento del rol de la mujer en la ciencia. En nuestro país el número de científicos va en aumento, en número de científicas es de aproximadamente un 30% en las diferentes regiones del país. Conjuntamente, la ciencia es reconocida como un proceso centralizado y debido a la baja difusión y divulgación, el reconocimiento de referentes nacionales es reducido. La promoción del conocimiento a través de sus actores en estudiantes de colegio puede incentivar la vocación científica y promover la equidad de género en áreas masculinizadas. El objetivo general de esta propuesta es: Promover el reconocimiento de Grandes Científicas históricas y de Científico(a)s Regionales a través de la serie “Divas de la Ciencia” dirigido tanto a estudiantes de colegios como al público general. Los objetivos específicos son: 1) Visibilizar a Grandes Científicas con el fin de promover su reconocimiento por el público general, 2) Promocionar a Científico(a)s Regionales como nuevos referentes científicos por el público general, y 3) Integrar la serie como herramienta de enseñanza/aprendizaje a las clases de ciencia en colegios del país. La serie constará de 12 episodios, y cada entrega tendrá una presentación animada de una “Diva” (3 min) enlazada a la investigación del Científico(a) Regional (5 min), y divulgada en un canal de YouTube. El diseño de los episodios espera generar una experiencia memorable al exponer los problemas que debió enfrentar cada “Diva” para lograr su investigación en conjunto con la identificación con el/la Científico/a Regional; además de utilizar un lenguaje cercano y sencillo, musicalización y movimientos de las animaciones digitales. Los capítulos estarán divididos en tres ciclos de acuerdo a los programas del Mineduc: 7º-8º básico (ciclo I), 1º-2º Medio (ciclo II), y 3º-4º medio (ciclo III). Además, los profesores interesados serán capacitados para utilizar la serie en sus clases a través de una guía de actividades prácticas. Toda la propuesta no tendrá costo alguno para los participantes.
    Co-Investigador/a
    • Diciembre 2021
    Proyecto Adjudicado

    El desarrollo de herramientas para el an ́alisis de funciones vitales a trav ́es de im ́agenes representa un campo de creciente inter ́es, especialmente para el estudio de marcadores tempranos de diversas patolog ́ıas, as ́ı como el desarrollo de aplicaciones diagn ́osticas a mediano plazo. En este contexto, el an ́alisis de la funci ́on vascular, a lo largo del ciclo vital, continua siendo un ́area con un alta demanda de nuevas tecnolog ́ıas, debido a su gran impacto a nivel de salud en la poblaci ́on. Esta propuesta busca generar una l ́ınea de investigaci ́on actualmente casi inexistente en Chile, las im ́agenes ultras ́onicas m ́edicas. En particular, nos gustar ́ıa introducir en Chile una t ́ecnica recientemente propuesta, denominada microscop ́ıa de localizaci ́on por ultrasonido (ULM), tambi ́en conocida como im ́agenes de su ́per- resoluci ́on. Esta t ́ecnica puede crear im ́agenes del sistema circulatoria con una resoluci ́on nunca antes vista, lo que permite visualizar vasos sangu ́ıneos de hasta 5μm. As ́ı, nuestra propuesta posee dos grandes objetivos. El primero es Optimizar y robusteces los procesos involucrados en el desarrollo de las im ́agenes de su ́per-resoluci ́on ultras ́onicas, esto a trav ́es de Optimizar los par ́ametros de adquisici ́on de datos y de procesamiento con el fin de robustecer la generaci ́on de este tipo de im ́agenes. Nuestro segundo objetivo es generar im ́agenes de su ́per- resoluci ́on de la red vascular interna de placenta humana ex-vivo y a buscar candidatos a marcadores a partir de estas im ́agenes. La ecograf ́ıa convencional es ampliamente usada en Chile y el mundo. Es preferida entre otras modalidades de im ́agenes (MRI, PET, TC) debido a su portabilidad, bajo costo, naturaleza no invasiva y a que utiliza radiaci ́on no ionizante, especialmente en condiciones como el embarazo, o en pacientes con manejo farmacol ́ogico complejo, entre otras. Recientemente, se han desarrollado nuevas modalidades de im ́agenes ultras ́onicas, propiciadas por la mejora en la industria de los semiconductores, lo que ha permitido un incremento en la capacidad de computo de los esc ́aneres ultraso ́nicos y en el nu ́mero de elementos piezoel ́ectrico de los transductores ultras ́onicos, generando un aumento significativo en la versatilidad y calidad de estas tecnolog ́ıas. Dentro de estas nuevas t ́ecnicas encontramos la microscop ́ıa de localizaci ́on por ultrasonido (ULM) o su ́per-resoluci ́on ultras ́onica. Esta revolucionaria t ́ecnica es capaz de superar el l ́ımite de difracci ́on y producir una resoluci ́on diez veces mayor en comparaci ́on con la ecograf ́ıa convencional. Puede ser usada para producir ima ́genes vasculares con una resoluci ́on sin precedentes de hasta 5 μm permitiendo as ́ı la visualizaci ́on de vasos sangu ́ıneos microsc ́opicos que hasta ahora no pueden ser vistos por ninguna t ́ecnica disponible cl ́ınicamente. ULM utiliza microburbujas (MBs) de gas (1 μm de di ́ametro) que actu ́an como fuentes acu ́sticas estoc ́asticas. Las MBs se inyectan en el torrente sangu ́ıneo y fluyen dentro del sistema circulatorio, donde aparecen y desaparecen de la regi ́on de inter ́es, lo que permite su localizaci ́on. Luego, la imagen de su ́per-resoluci ́on se construye a partir de la acumulaci ́on de cientos de miles de MBs localizadas. Actualmente, la mayor parte de la investigaci ́on en ULM se realiza desde el punto de vista de las ciencias de la ingenier ́ıa, que deja a veces a la ciencia fundamental como un aspecto secundario. Nuestro equipo, debido al car ́acter transdisciplinario de esta propuesta, esta constituido por investigadores de el ́area de la ingenier ́ıa, f ́ısica, biomedicina y matem ́aticas. Basados en las fortalezas de este equipo, proponemos estudiar esta tecnolog ́ıa desde la perspectiva de la ciencia fundamental, buscando limitaciones en ella, y estableciendo los mecanismos fisiol ́ogicos que se manifiestan a nivel de las im ́agenes de su ́per-resoluci ́on, permitiendo superar sus actuales limitaciones y potenciando su posible aplicaci ́on en el ́area m ́edica. En este contexto buscaremos como segundo objetivo el visualizar la microvasculatura de muestras de placenta ex-vivo, las que ser ́an donadas voluntariamente por pacientes del hospital regional de Rancagua, y complementar estas observaciones con par ́ametros funcionales y moleculares, con el fin de modelar desde distintas perspectivas nuevos marcadores de funci ́on vascular. Usualmente para lograr el avance en le desarrollo de este tipo de t ́ecnicas, se requieren condiciones experimentales altamente controlables, las que se logran utilizando sistemas que imitan el tejido en cuesti ́on, el que en nuestro caso es el sistema vascular. Para esto, se utilizan mayormente experimentos in-vitro fabricados a partir de microtubos de 50−150 μm de di ́ametro interno. Sin embargo, existe una gran diferencia entre las propiedades de este tipo de sistemas y las propiedades acu ́sticas de tejido in-vivo humano. Lo que requiere una gran cantidad de iteraciones experimentales retazando el desarrollo. As ́ı, al utilizar tejido humano ex-vivo pretendemos aumentar significativamente la velocidad de la curva de aprendizaje y por consiguiente lograr im ́agenes de su ́per-resoluci ́on humano compatibles dentro de la duraci ́on de esta propuesta. As ́ı mismo, el desarrollo de esta propuesta en un modelo vascular como la placenta humana representa un clara oportunidad para aportar en un ́area actualmente limitada en su capacidad diagn ́ostica, lo que restringe la aplicaci ́on de intervenciones efectivas durante el embarazo, con consecuencias en la salud de la madre y su progenie. Como proyecciones de este esquema colaborativo esperamos tener acceso a par ́ametros biol ́ogicos con los cuales generar nuevas formas de diagn ́ostico de alta precisi ́on, en especial a nivel de las estructuras involucradas, en primera instancia, con el desarrollo de alteraciones vasculares (i.e. vasos de pequen ̃o calibre). Con ello buscamos desarrollar un tecnolog ́ıa con base cient ́ıfica a trav ́es de la cual ser ́a posible obtener indicadores de mayor sensibilidad y especificidad para variadas condiciones, enfermedades o s ́ındromes, relacionados con la funci ́on vascular.
    Responsable Alterno
    • Diciembre 2021
    Proyecto Adjudicado

    El desarrollo de herramientas para el an ́alisis de funciones vitales a trav ́es de im ́agenes representa un campo de creciente inter ́es, especialmente para el estudio de marcadores tempranos de diversas patolog ́ıas, as ́ı como el desarrollo de aplicaciones diagn ́osticas a mediano plazo. En este contexto, el an ́alisis de la funci ́on vascular, a lo largo del ciclo vital, continua siendo un ́area con un alta demanda de nuevas tecnolog ́ıas, debido a su gran impacto a nivel de salud en la poblaci ́on. Esta propuesta busca generar una l ́ınea de investigaci ́on actualmente casi inexistente en Chile, las im ́agenes ultras ́onicas m ́edicas. En particular, nos gustar ́ıa introducir en Chile una t ́ecnica recientemente propuesta, denominada microscop ́ıa de localizaci ́on por ultrasonido (ULM), tambi ́en conocida como im ́agenes de su ́per- resoluci ́on. Esta t ́ecnica puede crear im ́agenes del sistema circulatoria con una resoluci ́on nunca antes vista, lo que permite visualizar vasos sangu ́ıneos de hasta 5μm. As ́ı, nuestra propuesta posee dos grandes objetivos. El primero es Optimizar y robusteces los procesos involucrados en el desarrollo de las im ́agenes de su ́per-resoluci ́on ultras ́onicas, esto a trav ́es de Optimizar los par ́ametros de adquisici ́on de datos y de procesamiento con el fin de robustecer la generaci ́on de este tipo de im ́agenes. Nuestro segundo objetivo es generar im ́agenes de su ́per- resoluci ́on de la red vascular interna de placenta humana ex-vivo y a buscar candidatos a marcadores a partir de estas im ́agenes. La ecograf ́ıa convencional es ampliamente usada en Chile y el mundo. Es preferida entre otras modalidades de im ́agenes (MRI, PET, TC) debido a su portabilidad, bajo costo, naturaleza no invasiva y a que utiliza radiaci ́on no ionizante, especialmente en condiciones como el embarazo, o en pacientes con manejo farmacol ́ogico complejo, entre otras. Recientemente, se han desarrollado nuevas modalidades de im ́agenes ultras ́onicas, propiciadas por la mejora en la industria de los semiconductores, lo que ha permitido un incremento en la capacidad de computo de los esc ́aneres ultraso ́nicos y en el nu ́mero de elementos piezoel ́ectrico de los transductores ultras ́onicos, generando un aumento significativo en la versatilidad y calidad de estas tecnolog ́ıas. Dentro de estas nuevas t ́ecnicas encontramos la microscop ́ıa de localizaci ́on por ultrasonido (ULM) o su ́per-resoluci ́on ultras ́onica. Esta revolucionaria t ́ecnica es capaz de superar el l ́ımite de difracci ́on y producir una resoluci ́on diez veces mayor en comparaci ́on con la ecograf ́ıa convencional. Puede ser usada para producir ima ́genes vasculares con una resoluci ́on sin precedentes de hasta 5 μm permitiendo as ́ı la visualizaci ́on de vasos sangu ́ıneos microsc ́opicos que hasta ahora no pueden ser vistos por ninguna t ́ecnica disponible cl ́ınicamente. ULM utiliza microburbujas (MBs) de gas (1 μm de di ́ametro) que actu ́an como fuentes acu ́sticas estoc ́asticas. Las MBs se inyectan en el torrente sangu ́ıneo y fluyen dentro del sistema circulatorio, donde aparecen y desaparecen de la regi ́on de inter ́es, lo que permite su localizaci ́on. Luego, la imagen de su ́per-resoluci ́on se construye a partir de la acumulaci ́on de cientos de miles de MBs localizadas. Actualmente, la mayor parte de la investigaci ́on en ULM se realiza desde el punto de vista de las ciencias de la ingenier ́ıa, que deja a veces a la ciencia fundamental como un aspecto secundario. Nuestro equipo, debido al car ́acter transdisciplinario de esta propuesta, esta constituido por investigadores de el ́area de la ingenier ́ıa, f ́ısica, biomedicina y matem ́aticas. Basados en las fortalezas de este equipo, proponemos estudiar esta tecnolog ́ıa desde la perspectiva de la ciencia fundamental, buscando limitaciones en ella, y estableciendo los mecanismos fisiol ́ogicos que se manifiestan a nivel de las im ́agenes de su ́per-resoluci ́on, permitiendo superar sus actuales limitaciones y potenciando su posible aplicaci ́on en el ́area m ́edica. En este contexto buscaremos como segundo objetivo el visualizar la microvasculatura de muestras de placenta ex-vivo, las que ser ́an donadas voluntariamente por pacientes del hospital regional de Rancagua, y complementar estas observaciones con par ́ametros funcionales y moleculares, con el fin de modelar desde distintas perspectivas nuevos marcadores de funci ́on vascular. Usualmente para lograr el avance en le desarrollo de este tipo de t ́ecnicas, se requieren condiciones experimentales altamente controlables, las que se logran utilizando sistemas que imitan el tejido en cuesti ́on, el que en nuestro caso es el sistema vascular. Para esto, se utilizan mayormente experimentos in-vitro fabricados a partir de microtubos de 50−150 μm de di ́ametro interno. Sin embargo, existe una gran diferencia entre las propiedades de este tipo de sistemas y las propiedades acu ́sticas de tejido in-vivo humano. Lo que requiere una gran cantidad de iteraciones experimentales retazando el desarrollo. As ́ı, al utilizar tejido humano ex-vivo pretendemos aumentar significativamente la velocidad de la curva de aprendizaje y por consiguiente lograr im ́agenes de su ́per-resoluci ́on humano compatibles dentro de la duraci ́on de esta propuesta. As ́ı mismo, el desarrollo de esta propuesta en un modelo vascular como la placenta humana representa un clara oportunidad para aportar en un ́area actualmente limitada en su capacidad diagn ́ostica, lo que restringe la aplicaci ́on de intervenciones efectivas durante el embarazo, con consecuencias en la salud de la madre y su progenie. Como proyecciones de este esquema colaborativo esperamos tener acceso a par ́ametros biol ́ogicos con los cuales generar nuevas formas de diagn ́ostico de alta precisi ́on, en especial a nivel de las estructuras involucradas, en primera instancia, con el desarrollo de alteraciones vasculares (i.e. vasos de pequen ̃o calibre). Con ello buscamos desarrollar un tecnolog ́ıa con base cient ́ıfica a trav ́es de la cual ser ́a posible obtener indicadores de mayor sensibilidad y especificidad para variadas condiciones, enfermedades o s ́ındromes, relacionados con la funci ́on vascular.
    • Diciembre 2021
    Proyecto Adjudicado

    El desarrollo de herramientas para el an ́alisis de funciones vitales a trav ́es de im ́agenes representa un campo de creciente inter ́es, especialmente para el estudio de marcadores tempranos de diversas patolog ́ıas, as ́ı como el desarrollo de aplicaciones diagn ́osticas a mediano plazo. En este contexto, el an ́alisis de la funci ́on vascular, a lo largo del ciclo vital, continua siendo un ́area con un alta demanda de nuevas tecnolog ́ıas, debido a su gran impacto a nivel de salud en la poblaci ́on. Esta propuesta busca generar una l ́ınea de investigaci ́on actualmente casi inexistente en Chile, las im ́agenes ultras ́onicas m ́edicas. En particular, nos gustar ́ıa introducir en Chile una t ́ecnica recientemente propuesta, denominada microscop ́ıa de localizaci ́on por ultrasonido (ULM), tambi ́en conocida como im ́agenes de su ́per- resoluci ́on. Esta t ́ecnica puede crear im ́agenes del sistema circulatoria con una resoluci ́on nunca antes vista, lo que permite visualizar vasos sangu ́ıneos de hasta 5μm. As ́ı, nuestra propuesta posee dos grandes objetivos. El primero es Optimizar y robusteces los procesos involucrados en el desarrollo de las im ́agenes de su ́per-resoluci ́on ultras ́onicas, esto a trav ́es de Optimizar los par ́ametros de adquisici ́on de datos y de procesamiento con el fin de robustecer la generaci ́on de este tipo de im ́agenes. Nuestro segundo objetivo es generar im ́agenes de su ́per- resoluci ́on de la red vascular interna de placenta humana ex-vivo y a buscar candidatos a marcadores a partir de estas im ́agenes. La ecograf ́ıa convencional es ampliamente usada en Chile y el mundo. Es preferida entre otras modalidades de im ́agenes (MRI, PET, TC) debido a su portabilidad, bajo costo, naturaleza no invasiva y a que utiliza radiaci ́on no ionizante, especialmente en condiciones como el embarazo, o en pacientes con manejo farmacol ́ogico complejo, entre otras. Recientemente, se han desarrollado nuevas modalidades de im ́agenes ultras ́onicas, propiciadas por la mejora en la industria de los semiconductores, lo que ha permitido un incremento en la capacidad de computo de los esc ́aneres ultraso ́nicos y en el nu ́mero de elementos piezoel ́ectrico de los transductores ultras ́onicos, generando un aumento significativo en la versatilidad y calidad de estas tecnolog ́ıas. Dentro de estas nuevas t ́ecnicas encontramos la microscop ́ıa de localizaci ́on por ultrasonido (ULM) o su ́per-resoluci ́on ultras ́onica. Esta revolucionaria t ́ecnica es capaz de superar el l ́ımite de difracci ́on y producir una resoluci ́on diez veces mayor en comparaci ́on con la ecograf ́ıa convencional. Puede ser usada para producir ima ́genes vasculares con una resoluci ́on sin precedentes de hasta 5 μm permitiendo as ́ı la visualizaci ́on de vasos sangu ́ıneos microsc ́opicos que hasta ahora no pueden ser vistos por ninguna t ́ecnica disponible cl ́ınicamente. ULM utiliza microburbujas (MBs) de gas (1 μm de di ́ametro) que actu ́an como fuentes acu ́sticas estoc ́asticas. Las MBs se inyectan en el torrente sangu ́ıneo y fluyen dentro del sistema circulatorio, donde aparecen y desaparecen de la regi ́on de inter ́es, lo que permite su localizaci ́on. Luego, la imagen de su ́per-resoluci ́on se construye a partir de la acumulaci ́on de cientos de miles de MBs localizadas. Actualmente, la mayor parte de la investigaci ́on en ULM se realiza desde el punto de vista de las ciencias de la ingenier ́ıa, que deja a veces a la ciencia fundamental como un aspecto secundario. Nuestro equipo, debido al car ́acter transdisciplinario de esta propuesta, esta constituido por investigadores de el ́area de la ingenier ́ıa, f ́ısica, biomedicina y matem ́aticas. Basados en las fortalezas de este equipo, proponemos estudiar esta tecnolog ́ıa desde la perspectiva de la ciencia fundamental, buscando limitaciones en ella, y estableciendo los mecanismos fisiol ́ogicos que se manifiestan a nivel de las im ́agenes de su ́per-resoluci ́on, permitiendo superar sus actuales limitaciones y potenciando su posible aplicaci ́on en el ́area m ́edica. En este contexto buscaremos como segundo objetivo el visualizar la microvasculatura de muestras de placenta ex-vivo, las que ser ́an donadas voluntariamente por pacientes del hospital regional de Rancagua, y complementar estas observaciones con par ́ametros funcionales y moleculares, con el fin de modelar desde distintas perspectivas nuevos marcadores de funci ́on vascular. Usualmente para lograr el avance en le desarrollo de este tipo de t ́ecnicas, se requieren condiciones experimentales altamente controlables, las que se logran utilizando sistemas que imitan el tejido en cuesti ́on, el que en nuestro caso es el sistema vascular. Para esto, se utilizan mayormente experimentos in-vitro fabricados a partir de microtubos de 50−150 μm de di ́ametro interno. Sin embargo, existe una gran diferencia entre las propiedades de este tipo de sistemas y las propiedades acu ́sticas de tejido in-vivo humano. Lo que requiere una gran cantidad de iteraciones experimentales retazando el desarrollo. As ́ı, al utilizar tejido humano ex-vivo pretendemos aumentar significativamente la velocidad de la curva de aprendizaje y por consiguiente lograr im ́agenes de su ́per-resoluci ́on humano compatibles dentro de la duraci ́on de esta propuesta. As ́ı mismo, el desarrollo de esta propuesta en un modelo vascular como la placenta humana representa un clara oportunidad para aportar en un ́area actualmente limitada en su capacidad diagn ́ostica, lo que restringe la aplicaci ́on de intervenciones efectivas durante el embarazo, con consecuencias en la salud de la madre y su progenie. Como proyecciones de este esquema colaborativo esperamos tener acceso a par ́ametros biol ́ogicos con los cuales generar nuevas formas de diagn ́ostico de alta precisi ́on, en especial a nivel de las estructuras involucradas, en primera instancia, con el desarrollo de alteraciones vasculares (i.e. vasos de pequen ̃o calibre). Con ello buscamos desarrollar un tecnolog ́ıa con base cient ́ıfica a trav ́es de la cual ser ́a posible obtener indicadores de mayor sensibilidad y especificidad para variadas condiciones, enfermedades o s ́ındromes, relacionados con la funci ́on vascular.
    Co-Investigador/a
      • Diciembre 2021
      Proyecto Adjudicado

      La suplementación con proteínas es una de las principales recomendaciones ante la practica regular de ejercicio físico de resistencia (RT). En personas mayores, la necesidad de proteína se incrementa particularmente ante cambios fisiológicos y fisiopatológicos los que se asocian con la pérdida de la función y tejido muscular, por lo que su ingesta se hace de mayor relevancia en esta población. Los lácteos fermentados como el yogur, y en especial los con un contenido extra de proteína, han aumentado su popularidad y consumo en el mercado nacional. Su composición nutricional resulta de particular interés, dado su perfil de aminoácidos y en particular su alto contenido de Leucina, el que podría compararse con los clásico suplementos de proteína recomendados para la ganancia y recuperación muscular. Objetivo: Analizar el efecto en la composición corporal, perfil lipídico, condición fisica y funcionalidad muscular inducidas por ingesta de yogures altos en proteína versus proteína Whey junto un programa de resistencia muscular en personas mayores Hipótesis: La ingesta de yogures altos en proteína conllevará a iguales o mayores ganancias de masa muscular, condición fisica y funcionalidad que las obtenidas con la ingesta de proteínas Whey en conjunto a un entrenamiento de resistencia en personas mayores. Metodología: Se reclutarán 16 personas mayores (60-75 años), sanas y sin intolerancia a la lactosa para llevar a cabo 8 semanas de entrenamiento de resistencia (RT) muscular 3 veces por semana, los que de forma aleatoria serán suplementados con yogurt alto en proteínas (YPRT) o proteína Whey (WPRT). Al inicio y al término de la intervención se evaluará la composición corporal mediante DEXA, fuerza muscular, consumo máximo de oxígeno y perfil lipídico. Resultados Esperados: Se espera que el grupo YPRT logre incrementos similares o superiores en la fuerza muscular, masa libre de grasa, perfil lipídico y disminución de la masa grasa y que el grupo WPRT.
      Investigador/a Responsable
        • Diciembre 2021
        Proyecto Adjudicado

        La respuesta inflamatoria al daño muscular puede comprometer la fuerza/masa al inducir la formación de tejido adiposo intermuscular (IMAT). IMAT se origina de la diferenciación adipogénica de células mesenquimales progenitoras fibro-adipogénicas (FAPs). Este proceso podría revertirse modulando la respuesta inflamatoria aguda. Sin embargo, el uso de antiinflamatorios inhibe la síntesis proteica y reduce la capacidad regenerativa muscular. Alternativamente, medidas físicas como el reposo funcional o la reincorporación temprana a la actividad han reportado efectos contradictorios sobre el proceso inflamatorio, lo que dificulta establecer indicaciones en el manejo de la lesión muscular. Por otro lado, se ha descrito un potente papel antinflamatorio local o sistémico del cuerpo cetónico β-hydroxybutirato (βHB); efecto mediado por la inhibición del inflamasoma NLRP3 y la secreción de citoquinas proinflamatorias. Importantemente, la activación del inflamasoma NLRP3 favorecería la adipogénesis de células mesenquimales, lo que sugiere un rol en la formación de IMAT. Se hipotetiza que la suplementación con βHB durante la recuperación de una lesión muscular aguda inhibe la diferenciación adipogénica de FAPs reduciendo la formación de IMAT lo que acelera la reparación y recuperación funcional del tejido muscular. Este efecto estaría mediado por la inhibición del inflamasoma NLRP3. Se inyectará una solución hiperosmótica al 25% de glicerol o salino en el músculo tibial anterior en ratones con o sin suplementación de 3 mg/g βHB durante 2 semanas post injuria. Se recolectará tejido muscular al 14dpi para análisis histológico de IMAT. Paralelamente, se aislarán FAPs del estroma vascular muscular al 3dpi. En FAPs aisladas se evaluarán proteínas de la vía NLPR3 inflamasoma y su capacidad adipogénica en respuesta al tratamiento in-vitro con 3mM βHB. Los resultados de esta propuesta nos permitirán mostrar los efectos terapéuticos de la suplementación dietaría con cuerpos cetónicos en la función y recuperación muscular post daño.
        Responsable Alterno
          • Diciembre 2021
          Proyecto Adjudicado

          El desarrollo de herramientas para el an ́alisis de funciones vitales a trav ́es de im ́agenes representa un campo de creciente inter ́es, especialmente para el estudio de marcadores tempranos de diversas patolog ́ıas, as ́ı como el desarrollo de aplicaciones diagn ́osticas a mediano plazo. En este contexto, el an ́alisis de la funci ́on vascular, a lo largo del ciclo vital, continua siendo un ́area con un alta demanda de nuevas tecnolog ́ıas, debido a su gran impacto a nivel de salud en la poblaci ́on. Esta propuesta busca generar una l ́ınea de investigaci ́on actualmente casi inexistente en Chile, las im ́agenes ultras ́onicas m ́edicas. En particular, nos gustar ́ıa introducir en Chile una t ́ecnica recientemente propuesta, denominada microscop ́ıa de localizaci ́on por ultrasonido (ULM), tambi ́en conocida como im ́agenes de su ́per- resoluci ́on. Esta t ́ecnica puede crear im ́agenes del sistema circulatoria con una resoluci ́on nunca antes vista, lo que permite visualizar vasos sangu ́ıneos de hasta 5μm. As ́ı, nuestra propuesta posee dos grandes objetivos. El primero es Optimizar y robusteces los procesos involucrados en el desarrollo de las im ́agenes de su ́per-resoluci ́on ultras ́onicas, esto a trav ́es de Optimizar los par ́ametros de adquisici ́on de datos y de procesamiento con el fin de robustecer la generaci ́on de este tipo de im ́agenes. Nuestro segundo objetivo es generar im ́agenes de su ́per- resoluci ́on de la red vascular interna de placenta humana ex-vivo y a buscar candidatos a marcadores a partir de estas im ́agenes. La ecograf ́ıa convencional es ampliamente usada en Chile y el mundo. Es preferida entre otras modalidades de im ́agenes (MRI, PET, TC) debido a su portabilidad, bajo costo, naturaleza no invasiva y a que utiliza radiaci ́on no ionizante, especialmente en condiciones como el embarazo, o en pacientes con manejo farmacol ́ogico complejo, entre otras. Recientemente, se han desarrollado nuevas modalidades de im ́agenes ultras ́onicas, propiciadas por la mejora en la industria de los semiconductores, lo que ha permitido un incremento en la capacidad de computo de los esc ́aneres ultraso ́nicos y en el nu ́mero de elementos piezoel ́ectrico de los transductores ultras ́onicos, generando un aumento significativo en la versatilidad y calidad de estas tecnolog ́ıas. Dentro de estas nuevas t ́ecnicas encontramos la microscop ́ıa de localizaci ́on por ultrasonido (ULM) o su ́per-resoluci ́on ultras ́onica. Esta revolucionaria t ́ecnica es capaz de superar el l ́ımite de difracci ́on y producir una resoluci ́on diez veces mayor en comparaci ́on con la ecograf ́ıa convencional. Puede ser usada para producir ima ́genes vasculares con una resoluci ́on sin precedentes de hasta 5 μm permitiendo as ́ı la visualizaci ́on de vasos sangu ́ıneos microsc ́opicos que hasta ahora no pueden ser vistos por ninguna t ́ecnica disponible cl ́ınicamente. ULM utiliza microburbujas (MBs) de gas (1 μm de di ́ametro) que actu ́an como fuentes acu ́sticas estoc ́asticas. Las MBs se inyectan en el torrente sangu ́ıneo y fluyen dentro del sistema circulatorio, donde aparecen y desaparecen de la regi ́on de inter ́es, lo que permite su localizaci ́on. Luego, la imagen de su ́per-resoluci ́on se construye a partir de la acumulaci ́on de cientos de miles de MBs localizadas. Actualmente, la mayor parte de la investigaci ́on en ULM se realiza desde el punto de vista de las ciencias de la ingenier ́ıa, que deja a veces a la ciencia fundamental como un aspecto secundario. Nuestro equipo, debido al car ́acter transdisciplinario de esta propuesta, esta constituido por investigadores de el ́area de la ingenier ́ıa, f ́ısica, biomedicina y matem ́aticas. Basados en las fortalezas de este equipo, proponemos estudiar esta tecnolog ́ıa desde la perspectiva de la ciencia fundamental, buscando limitaciones en ella, y estableciendo los mecanismos fisiol ́ogicos que se manifiestan a nivel de las im ́agenes de su ́per-resoluci ́on, permitiendo superar sus actuales limitaciones y potenciando su posible aplicaci ́on en el ́area m ́edica. En este contexto buscaremos como segundo objetivo el visualizar la microvasculatura de muestras de placenta ex-vivo, las que ser ́an donadas voluntariamente por pacientes del hospital regional de Rancagua, y complementar estas observaciones con par ́ametros funcionales y moleculares, con el fin de modelar desde distintas perspectivas nuevos marcadores de funci ́on vascular. Usualmente para lograr el avance en le desarrollo de este tipo de t ́ecnicas, se requieren condiciones experimentales altamente controlables, las que se logran utilizando sistemas que imitan el tejido en cuesti ́on, el que en nuestro caso es el sistema vascular. Para esto, se utilizan mayormente experimentos in-vitro fabricados a partir de microtubos de 50−150 μm de di ́ametro interno. Sin embargo, existe una gran diferencia entre las propiedades de este tipo de sistemas y las propiedades acu ́sticas de tejido in-vivo humano. Lo que requiere una gran cantidad de iteraciones experimentales retazando el desarrollo. As ́ı, al utilizar tejido humano ex-vivo pretendemos aumentar significativamente la velocidad de la curva de aprendizaje y por consiguiente lograr im ́agenes de su ́per-resoluci ́on humano compatibles dentro de la duraci ́on de esta propuesta. As ́ı mismo, el desarrollo de esta propuesta en un modelo vascular como la placenta humana representa un clara oportunidad para aportar en un ́area actualmente limitada en su capacidad diagn ́ostica, lo que restringe la aplicaci ́on de intervenciones efectivas durante el embarazo, con consecuencias en la salud de la madre y su progenie. Como proyecciones de este esquema colaborativo esperamos tener acceso a par ́ametros biol ́ogicos con los cuales generar nuevas formas de diagn ́ostico de alta precisi ́on, en especial a nivel de las estructuras involucradas, en primera instancia, con el desarrollo de alteraciones vasculares (i.e. vasos de pequen ̃o calibre). Con ello buscamos desarrollar un tecnolog ́ıa con base cient ́ıfica a trav ́es de la cual ser ́a posible obtener indicadores de mayor sensibilidad y especificidad para variadas condiciones, enfermedades o s ́ındromes, relacionados con la funci ́on vascular.
          Co-Investigador/a
            • Diciembre 2021
            Proyecto Adjudicado

            Cuando pensamos en científicos y su aporte a la ciencia, generalmente reconocemos un estereotipo masculino, acompañado de un desconocimiento del rol de la mujer en la ciencia. En nuestro país el número de científicos va en aumento, en número de científicas es de aproximadamente un 30% en las diferentes regiones del país. Conjuntamente, la ciencia es reconocida como un proceso centralizado y debido a la baja difusión y divulgación, el reconocimiento de referentes nacionales es reducido. La promoción del conocimiento a través de sus actores en estudiantes de colegio puede incentivar la vocación científica y promover la equidad de género en áreas masculinizadas. El objetivo general de esta propuesta es: Promover el reconocimiento de Grandes Científicas históricas y de Científico(a)s Regionales a través de la serie “Divas de la Ciencia” dirigido tanto a estudiantes de colegios como al público general. Los objetivos específicos son: 1) Visibilizar a Grandes Científicas con el fin de promover su reconocimiento por el público general, 2) Promocionar a Científico(a)s Regionales como nuevos referentes científicos por el público general, y 3) Integrar la serie como herramienta de enseñanza/aprendizaje a las clases de ciencia en colegios del país. La serie constará de 12 episodios, y cada entrega tendrá una presentación animada de una “Diva” (3 min) enlazada a la investigación del Científico(a) Regional (5 min), y divulgada en un canal de YouTube. El diseño de los episodios espera generar una experiencia memorable al exponer los problemas que debió enfrentar cada “Diva” para lograr su investigación en conjunto con la identificación con el/la Científico/a Regional; además de utilizar un lenguaje cercano y sencillo, musicalización y movimientos de las animaciones digitales. Los capítulos estarán divididos en tres ciclos de acuerdo a los programas del Mineduc: 7º-8º básico (ciclo I), 1º-2º Medio (ciclo II), y 3º-4º medio (ciclo III). Además, los profesores interesados serán capacitados para utilizar la serie en sus clases a través de una guía de actividades prácticas. Toda la propuesta no tendrá costo alguno para los participantes.
            Responsable Alterno
              • Diciembre 2021
              Proyecto En Ejecución

              Estudio de casos de Diabetes Mellitus de nueva aparición
              Responsable AlternoInvestigador/a Responsable