Water confined in Å- to nm-scale pores is volumetrically and chemically important in surficial and near surface geological environments. Partitioning of water between bulk liquid and vapor phases and water confined in spaces within and between minerals plays a critical role in determining the fate of geochemical and geobiological processes. Despite considerable effort over the past several decades focused on the properties of confined water, rigorous thermodynamic models permitting simultaneous consideration of confined water stability relative to bulk water that are consistent with widely employed geochemical models are generally not available. In part, this is due to a paucity of physical chemical models permitting quantitative description of the hysteresis that is commonly observed between sorption and desorption of confined water.
The present study addresses these needs through a combination of equilibrium observations, calorimetric measurements, and thermodynamic modeling of a selected suite of systems containing confined water. Model zeolite and nanoporous systems exhibiting hysteretic sorption/desorption behavior will be studied in order to test a newly developed thermodynamic model that shows promise in predicting hysteretic behavior. In addition, two other types of systems will be studied to fill in gaps currently present in the understanding of the factors controlling the stability of confined water: a) pure silica zeolites in which water molecules do not solvate ions; and c) zeolite systems containing confined water that is only bonded to ions. Water in these systems exhibits ?endmember? structural states, that when combined form the environments found in most previously studied microporous confined water systems (that is, those containing water molecules that both solvate ions and interact with the confining medium).
Amazonia is Earth’s most iconic center of biological diversity and endemism and is among the most important terrestrial biomes due to its contributions to global systems ecology. This project seeks to answer an overarching question in biodiversity science: How was the modern Amazonian biota and its environment assembled across space and time? The research is designed to understand the evolutionary and environmental-ecological history of late Neogene-Recent Amazonia through a comparative approach that integrates across the disciplines of systematics, population biology, ecosystem structure and function, geology, Earth systems modeling and remote sensing, and environmental history. The project also investigates how biotic and environmental change over this time-period influenced Amazonian functional diversity in biogeochemical flows, and how these, in turn, shaped the dimensions of biodiversity seen today as well as the history of global-scale changes in biogeochemical cycling.
The project, which is a collaboration with Brazilian scientists and funding agencies, represents the most integrative examination of Amazonian biodiversity and its history to date. The approaches taken describe a methodological template for analyzing information about the history of biotic and environmental change across large, ecologically complex landscapes that can be generalized to other systems. The project creates a large framework for formal and informal education including the training of students, development of a major museum exhibit on Amazonia, workshops for K-12 STEM teachers, publications in professional educational journals, and a web portal, The Evolutionary Encyclopedia of Amazonian Biodiversity, that will make all results available to the public, as well as serve as an informational platform about Amazonian biodiversity and its global importance. This award is being co-funded by NSF’s Office of International Science and Engineering.
Longstanding goals of scientific ocean drilling include determining the timing and amplitudes of global sea-level change, as well as the role of eustacy in the generation and preservation of continental margin stratigraphy. However, continental margin sedimentation is a function of both allogenic and autogenic processes, and extracting a eustatic record requires an understanding of local sedimentary processes and their influence on strata formation. IODP Expedition 317 to Canterbury Basin, New Zealand provides an opportunity to identify the regional processes involved in the formation of sedimentary sequences where temporally evolving across-shelf and along-margin sediment sources potentially interact with both eustasy and tectonics to generate margin stratigraphy. This study defines sedimentary petrofacies using petrographic and X-ray diffraction techniques and combines them with lithofacies to characterize sedimentation within unconformity-bounded sequences. Differentiating the relative influence of each sediment source is made possible by the unique aspects of the onshore geology and sediment supplied by the rivers of South Island, New Zealand: in this system sediment composition is a proxy for transport mode/direction, with mica-rich schist detritus being brought in from the south, and graywacke Torlesse detritus from the west. Higher-resolution analyses will target specific seismic sequences from the Pliocene to Recent that represent changing climatic and eustatic conditions. A primary hypothesis tested is that recurring lithofacies motifs that likely formed during high-amplitude Pleistocene sea-level cycles can be linked to sediment provenance, and even where less lithologically distinct, a recognizable signal may remain in the detrital fraction. Another hypothesis is that the formation of Plio- Pleistocene sequences along the Canterbury Margin is strongly influenced by the relative sediment supply from alongshore/shelf (Clutha/Waitaki rivers) versus cross-margin (Rangitata-Ashburton-Rakaia braided system) transport, with the latter becoming more dominant in the later Pleistocene, potentially leading to an autogenic increase in accommodation space that lead to increased sequence preservation. A holistic approach is used to test these hypotheses, similar to that applied in the MARGINS Source-to-Sink focus site on North Island, New Zealand. This methodology links newly acquired data from onshore outcrops, stream and coastal deposits (collected in conjunction with New Zealand colleagues) to Expedition 317 results in order to evaluate potential basin-wide changes in sediment supply and distribution. Temporal changes in the relative timing and routing of sediment to the Canterbury margin are determined from comparisons between the cross-shelf (U1351, U1353, U1354) and the two Canterbury slope sites (ODP Site 1119 and U1352). Discrete mineralogical observations from this study eventually will be compared to and combined with high-resolution elemental and carbonate analyses proposed by Fulthorpe et al. to provide key petrologic and mineralogic constraints on core and seismic data interpretation for the margin, including distinguishing lithologic changes that might correspond to Milankovitch cyclicity. The history of global sea level change and the impact of future sea-level rise related to global warming are one of the foremost issues facing society. Drilling results from the Canterbury Margin represent a key global component of a comprehensive IODP program to extract sea-level information from continental margin stratigraphy. Our data and results will be made publically available through the IODP portal as part of the IODP Sample, Data, and Obligations Policy and through presentations at meetings and publications. This study will provide educational opportunities for a number of high school, undergraduate and graduate students at CSU Northridge and the University of Florida. One high school student from Florida will participate as part of the UF Student Science Training Program (UF-SSTP), a seven-week residential research program for junior and senior-level high schools students considering science careers. Two undergraduate and two graduate students will participate in this project from CSUN and UF, including students from underrepresented groups and it is expected this participation will form the basis for their theses (BS/MS) or dissertation. The project includes an educational outreach program at UF as part of the UF Geogator program that provides presentations to local K-12 programs about Earth and our environment. The program will make the research on global sea-level change accessible to the local Florida community, where rising sea level and the hazards associated with it are a growing societal concern.
El objetivo del Núcleo Milenio Paleoclima es reconstruir los patrones y entender las causas del cambio climático pasado en el Hemisferio Sur (HS), con énfasis en la Patagonia chilena y argentina (40°-55°S). Esta región es ideal para investigar la evolución paleoclimática del tercio sur del mundo, por lo que planificamos estudiar múltiples sensores de variabilidad climática en el pasado a lo largo de transectos norte-sur y este-oeste. Esta zona es estratégica para monitorear componentes clave del sistema climático, dado que es el único continente que intersecta la corriente circumpolar antártica y el cinturón de vientos del oeste. Reconstruir la variabilidad paleoclimática en Patagonia mejorará nuestro entendimiento de las dinámicas climáticas en un sector insuficientemente estudiado del HS, así como la secuencia de eventos y procesos durante transiciones climáticas mayores.
En la presente postulación, se propone la incorporación al Instituto de Ciencias de la Ingeniería de la Universidad de OHiggins de la Dra. Tania Villaseñor Jorquera quien tiene una trayectoria académica destacada y un plan de docencia e investigación que aporta de forma sustantiva al desarrollo de la institución. La propuesta considera la investigación de procesos de erosión y transporte de sedimento en Chile central en relación al cambio climático y la actividad antrópica. En este proyecto, se monitoreará el flujo de sedimento en diferentes sectores de las cuencas de los ríos Maipo e Itata a través del análisis de proveniencia de sedimento fluvial con el fin de detectar variabilidad en las zonas que aportan sedimento y los mecanismos de transporte desde la cordillera hacia el océano. También se analizarán registros sedimentarios marinos para construir una línea base del funcionamiento de los sistemas sedimentarios en el pasado reciente. Esta línea de investigación tiene impacto directo en problemáticas de la zona centro de Chile, como la erosión, el transporte de contaminantes, procesos de remoción en masa, y propiciará colaboraciones interdisciplinarias entre académicos de la Universidad así como con investigadores de otras instituciones nacionales e internacionales. Esta propuesta de investigación, sumado a la experiencia docente de Tania, fortalecerá el grupo académico del Instituto, en particular el de la carrera de Ingeniería Civil Geológica. Las redes de trabajo internacional de Tania permitirán fortalecer el programa de internacionalización de la Universidad de OHiggins. Por otra parte, su experiencia en divulgación de la ciencia resulta muy atractivo para potenciar el proceso de vinculación con el medio, de gran importancia para la misión de la Universidad. Todos estos aspectos contribuirán de forma importante a la proyección de la Universidad de OHiggins como referente científico y académico para la región y el país.
The aim of this proposal is to develop a high-resolution (interdecadal) quantitative reconstruction of
SWW intensity variability over SSA during the Late Pleistocene-Holocene, based on the analysis of aeolian
lithic particles deposited in a closed-basin lake. With this reconstruction we expect to answer this question:
Are the different proxies responding synchronously to the SWW changes? if not, what other
factors may be influencing the record? What is the maximum time delay between proxies?, and
what is the resolution necessary to see this lag? Addressing this issue in the study of the dynamics of
SWW during the Late Pleistocene-Holocene will contribute to reconcile conflicting interpretations of SWW
based on different climate proxies in Patagonia. For this, this quantitative reconstruction will be accompanied by the reconstruction of precipitation changes associated to SWW dynamics using indirect proxies: pollen analyses in the same lacustrine sediments,and the study of a fjord sedimentary record to evaluate changes in sediment runoff. The comparison of direct and indirect proxies of changes in SWW activity from two different locations in the study area will permit to evaluate 1) local versus regional changes in environmental conditions, and 2) timing and lag between the different proxies and other climate records of the region (for example, Antarctic climate records). Our results will provide important insights into paleoclimatic dynamics of SSA by improving previous qualitative reconstructions for this belt and helping to decipher the magnitude and timing of SWW past intensity changes. This will support current efforts to better understand future climate projections in the region and adequately assess mitigation strategies against its effects.
aa