Ordenar Resultados
Filtrar por autor
  • Filtrar por Categoría
    Filtrar por tema de intéres
    • Enero 2024
    Proyecto En Ejecución

    reconstrucción del clima mediante dendrocronología en madera
    Co-Investigador/a
    • Marzo 2023
    Proyecto Adjudicado

    Water vapor is a key component of the hydrological cycle since it is directly involved in the production of precipitation (rain, snow, hail). The transport of water vapor from the tropics (20ºN-20ºS) is fundamental to produce precipitation in midlatitudes (30ºS-50ºS) were local amounts atmospheric moisture are lower than the water column precipitated during a typical storm. This is especially evident during extreme precipitation events, where precipitation accumulation can surpass 2 or 3 times the local atmospheric water vapor available. Extreme precipitation events (EPEs) are expected to increase due to the anthropogenic climate change, and therefore studies addressing the dynamics and forcing factors of these events are increasingly important. Current research examining the relationship between water vapor transport and precipitation in central-southern Chile have advanced in this direction. However, there is a lack of research aiming to understand water-vapor-precipitation process at the mesoscale, where changes in the order of hours associated to convection are important. Even more, despite many storms in central-southern Chile show convective characteristics (e.g. precipitation rates of 10 mm/h or larger), studies looking at the mesoscale processes has not been addressed so far, partially due to the lack of ground-based weather radars. As a result, this research proposal takes the challenge of studying the transport of water vapor and link it with precipitation processes (stratiform and convective) at the mesoscale level in central and southern Chile by using a suit of observations and numerical modeling. To determine the water vapor mechanisms involved in the precipitation processes, the study will employ an atmospheric moisture budget, which involves the balance between a storage term (precipitation in this case) and the linear interaction between local changes, advection, and convergence of water vapor following an air parcel. The budget will be computed using gridded data from a state-of-the-art atmospheric reanalysis (ERA5), numerical simulations with the Weather Research and Forecasting (WRF) model, and mathematical techniques such as finite differences and the trapezoidal integration rule. In addition, a relatively dense network of GPS deployed in central-southern Chile will provide direct estimates of local changes of the column water vapor, allowing us to perform a thorough validation of both ERA5 and WRF. Precipitation processes will be examined using several sources. The polar orbiting Global Precipitation Measurement (GPM) satellite mission provides global swaths of radar reflectivity using a dual-frequency radar (Ku and Ka bands) in a swath-width of 245 km with 5 km resolution at nadir, and vertical beams spaced at 250 m. Along with radar reflectivity, GPM provides estimates of precipitation rates and a classification of the precipitation type, facilitating the identification of precipitation processes. A vertically pointing precipitation radar (Micro Rain Radar, MRR) is currently installed at Universidad de Concepción and will provide time-height sections of radar reflectivity that will complement GPM observations. In addition, a second MRR is planned to be installed in central Chile to provide further meridional context of precipitation processes. Finally, a couple of optical disdrometers and meteorological stations will deliver surface estimates of precipitation at hourly (and higher) rates. In parallel, ERA5 will provide precipitation estimations and classification (stratiform, convective), while WRF will allow to examine precipitation in detail for selected case studies. At the end of this project, it will be clear what component(s) of the moisture budget are dominating precipitation during EPE storms, clarify the relative importance of stratiform and convective precipitation during EPEs, and elucidate if EPEs with strong convective precipitation are forced by atmospheric instabilities, advection of moisture being lifted by the complex terrain, or moisture convergence occurring over the ocean and moving inland. These results will provide the basis for future efforts looking to improve precipitation forecasting tools.
    Co-Investigador/aInvestigador/a Responsable
    Proyecto Adjudicado

    Water vapor is a key component of the hydrological cycle since it is directly involved in the production of precipitation (rain, snow, hail). The transport of water vapor from the tropics (20ºN-20ºS) is fundamental to produce precipitation in midlatitudes (30ºS-50ºS) were local amounts atmospheric moisture are lower than the water column precipitated during a typical storm. This is especially evident during extreme precipitation events, where precipitation accumulation can surpass 2 or 3 times the local atmospheric water vapor available. Extreme precipitation events (EPEs) are expected to increase due to the anthropogenic climate change, and therefore studies addressing the dynamics and forcing factors of these events are increasingly important. Current research examining the relationship between water vapor transport and precipitation in central-southern Chile have advanced in this direction. However, there is a lack of research aiming to understand water-vapor-precipitation process at the mesoscale, where changes in the order of hours associated to convection are important. Even more, despite many storms in central-southern Chile show convective characteristics (e.g. precipitation rates of 10 mm/h or larger), studies looking at the mesoscale processes has not been addressed so far, partially due to the lack of ground-based weather radars. As a result, this research proposal takes the challenge of studying the transport of water vapor and link it with precipitation processes (stratiform and convective) at the mesoscale level in central and southern Chile by using a suit of observations and numerical modeling. To determine the water vapor mechanisms involved in the precipitation processes, the study will employ an atmospheric moisture budget, which involves the balance between a storage term (precipitation in this case) and the linear interaction between local changes, advection, and convergence of water vapor following an air parcel. The budget will be computed using gridded data from a state-of-the-art atmospheric reanalysis (ERA5), numerical simulations with the Weather Research and Forecasting (WRF) model, and mathematical techniques such as finite differences and the trapezoidal integration rule. In addition, a relatively dense network of GPS deployed in central-southern Chile will provide direct estimates of local changes of the column water vapor, allowing us to perform a thorough validation of both ERA5 and WRF. Precipitation processes will be examined using several sources. The polar orbiting Global Precipitation Measurement (GPM) satellite mission provides global swaths of radar reflectivity using a dual-frequency radar (Ku and Ka bands) in a swath-width of 245 km with 5 km resolution at nadir, and vertical beams spaced at 250 m. Along with radar reflectivity, GPM provides estimates of precipitation rates and a classification of the precipitation type, facilitating the identification of precipitation processes. A vertically pointing precipitation radar (Micro Rain Radar, MRR) is currently installed at Universidad de Concepción and will provide time-height sections of radar reflectivity that will complement GPM observations. In addition, a second MRR is planned to be installed in central Chile to provide further meridional context of precipitation processes. Finally, a couple of optical disdrometers and meteorological stations will deliver surface estimates of precipitation at hourly (and higher) rates. In parallel, ERA5 will provide precipitation estimations and classification (stratiform, convective), while WRF will allow to examine precipitation in detail for selected case studies. At the end of this project, it will be clear what component(s) of the moisture budget are dominating precipitation during EPE storms, clarify the relative importance of stratiform and convective precipitation during EPEs, and elucidate if EPEs with strong convective precipitation are forced by atmospheric instabilities, advection of moisture being lifted by the complex terrain, or moisture convergence occurring over the ocean and moving inland. These results will provide the basis for future efforts looking to improve precipitation forecasting tools.
    Co-Investigador/aInvestigador/a Responsable
    • Enero 2023
    Proyecto En Ejecución

    In this project, we will develop methods that can provide strong bounds to quadratically-constrained problems by constructing linear outer-approximations. The advantage of pursuing linear approximations is that their efficiency allows them to be easily embedded in more complex frameworks that iteratively refine or subdivide them. On a high level, this is how most successful non-linear optimization solvers work.
    Investigador/a Responsable
      • Enero 2023
      • - Enero 2026
      Proyecto Adjudicado

      The project aims to study the cardiac cycle's impact on brain responses and auditory perception. Using electroencephalogram and electrocardiogram recordings, we compare the neuronal responses to heartbeats in response to auditory stimulation in the different phases of the cardiac cycle. We evaluate interoceptive measures and traits of anxiety and depression in the population to establish relationships between neuronal activity and sensory and behavioral parameters.
      Investigador/a Responsable
      • Enero 2023
      • - Enero 2026
      Proyecto En Ejecución

      Resumen
      Responsable AlternoInvestigador/a Responsable
      • Enero 2023
      • - Enero 2026
      Proyecto En Ejecución

      Arqueología y Paleontología del antiguo Lago de Tagua Tagua
      Co-Investigador/a
      • Enero 2023
      • - Enero 2026
      Proyecto Adjudicado

      La agricultura es una de las principales actividades económicas de la Región de O’Higgins, con un PIB que alcanza al año 2021 el 12,8% de representación a nivel nacional. El éxito productivo regional depende en gran medida de las condiciones edafoclimáticas que preponderan en las zonas cultivables y/o aptas para la agricultura. Sin embargo, el actual escenario de cambio climático genera una alteración de estas variables climáticas, con cambios evidentes en la variabilidad de las precipitaciones, frecuencia e intensidad de los días cálidos y fríos, y eventos climáticos extremos (heladas, granizo, entre otros). Consecuentemente, el impacto del cambio climático ha modificado y seguirá transformando los sistemas de producción de diversos cultivos a nivel nacional y local, incluyendo el cambio de las zonas productivas. Esta nueva realidad climática requiere de la pronta generación de conocimiento y la capacidad de innovar y desarrollar tecnologías inteligentes para adaptar y asegurar la producción de alimentos. Aunque existe conocimiento de los posibles efectos del cambio climático sobre la agricultura, la literatura indica que la diversidad geográfica y climática de la producción agrícola no permite predecir con precisión los impactos locales del cambio climático en los diferentes cultivos. Por lo tanto, la mejor forma de reducir esta incertidumbre climática es a través del desarrollo de tecnología, el conocimiento y la innovación aplicada para adaptar y asegurar la producción de alimentos. De hecho, la Conferencia de las Partes de la Convención de Cambio Climático realizada en París (COP21), enfatiza la necesidad de avanzar hacia una “agricultura climáticamente inteligente”, es decir, una actividad que entre en sintonía con los cambios globales, con mínima huella ambiental, altamente eficiente en el uso de insumos, resiliente, productiva y sostenible. Este proyecto plantea la construcción de infraestructura climáticamente inteligente como la primera cámara de simulación climática regional, la cual permitirá determinar el impacto de diferentes escenarios de cambio climático en cultivos y variedades de importancia para los agricultores de la Región de O’Higgins de manera anticipada. Se busca responder las interrogantes asociadas a qué cultivos son más idóneos para las distintas zonas geográficas de la Región de O’Higgins, bajo condiciones extremas de temperatura, humedad ambiental y disponibilidad de agua, entre otros aspectos. Con la información generada se desarrollarán directrices tecnológicas y sistemas de bajo costo para la medición de parámetros ambientales, con el fin de brindar a los agricultores soporte para la toma de decisiones a nivel local, y consecuentemente fortalecer la competitividad del sector agrícola de la Región de O’Higgins.
      Co-Investigador/a
        • Enero 2023
        Proyecto Adjudicado

        El presente trabajo, financiado por la Dirección de Equidad de Género y Diversidades de la Universidad de O’Higgins (Convocatoria 2022), busca evaluar las principales motivaciones y dificultades de las mujeres para ingresar a carreras de las Ciencias de la Ingeniería, titularse y continuar una carrera académica en la Región de O’Higgins. La Universidad Estatal de O’Higgins es una institución de 7 años que desde sus inicios ha promovido políticas para la equidad de género, sin embargo estas medidas pareciera ser aún insuficientes o no se le ha dado un seguimiento para ver su verdadero impacto en esta materia. La diferencia en el número de matrículas de mujeres vs hombres en carreras de Ciencias de la Ingeniería de Universidades chilenas es abismante, a pesar de la no existencia de diferencias inherentes/innatas entre hombres y mujeres que expliquen las brechas en los aprendizajes o trayectorias académicas en las matemáticas ( Bakker et al., 2021; Kersey et al., 2019; Lachance & Mazzocco, 2006; Spelke, 2005). Según Ing2030 (2018), el aumento de mujeres en carreras de ingeniería en Chile no ha sido significativo en un lapso de 10 años: 20% el año 2004 y 24% el año 2014. Tanto así que en el año 2019, el 7% de las mujeres que se titularon de pregrado en Chile, lo hicieron en las áreas de ciencia, tecnología, ingeniería y matemáticas (STEM), siendo el país con el porcentaje más bajo de los miembros de la OCDE (Ministerio de Ciencia, Tecnología, Conocimiento e Innovación, 2022). Para llevar a cabo este estudio se han usado metodologías cuantitativas y cualitativas. El estudio cuantitativo se realiza mediante encuestas online mientras que el estudio cualitativo es a través del desarrollo de Focus group. Se analizaron 468 encuestas online a estudiantes de enseñanza media de la Región de O’Higgins, 94 encuestas a estudiantes de las carreras de Ingeniería de la Universidad de O’Higgins y 25 encuestas a académicos(as) e investigadores del Instituto de Ciencias de la Ingeniería de la Universidad de O’Higgins. Adicionalmente, se analizaron los resultados de 3 focus groups a alumnas de enseñanza media de la comuna de Rancagua y 3 focus groups a alumnas de las carreras de Ingeniería de la Universidad de O’Higgins. Dentro de los resultados se observa que un 83% de los y las estudiantes de enseñanza media de la Región de O’Higgins considera que tanto hombres como mujeres avanzan con igual rapidez en sus carreras, un 84% de las y los estudiantes de carreras de Ingeniería de la Universidad de O’Higgins considera que mujeres y hombres tienen igualdad de avance en sus carreras, mientras que un 76% de académicos(as) e investigadores(as) estima que los hombres avanzan más rápido en su carrera. Se constató que estudiantes de enseñanza media, estudiantes de las carreras de ingeniería y académicas e investigadoras de la Región de O’Higgins experimentan brechas y barreras, sumado a la falta de confianza en sus capacidades y logros (Síndrome de la Impostora; Paterson & Vincent-Akpu, 2021). Adicionalmente, a pesar de considerar que en la Región de O’Higgins y en la Universidad de O’Higgins se promueve una cultura para la igualdad de género, el grupo en estudio tiene la creencia que las estudiantes y académicas de las Geociencias y Ciencias de la Ingeniería son más propensas a sufrir acoso. Asimismo, las estudiantes y científicas enfrentan importantes dificultades para compatibilizar la vida familiar y laboral. A través de este estudio buscamos visibilizar las principales dificultades que enfrentan estudiantes e investigadoras de esta área durante el desarrollo de su carrera. Tomar conciencia de la realidad de las mujeres en áreas STEM en la Región de O’Higgins permitirá tomar medidas más eficientes y eficaces tanto para la atracción como para evitar la fuga y/o estancamiento de estudiantes y científicas con alto potencial, permitiendo un acceso más igualitario en carreras STEM y un desarrollo en un espacio seguro y de respeto.
        Co-Investigador/a
        • Enero 2023
        Proyecto Adjudicado

        El presente trabajo, financiado por la Dirección de Equidad de Género y Diversidades de la Universidad de O’Higgins (Convocatoria 2022), busca evaluar las principales motivaciones y dificultades de las mujeres para ingresar a carreras de las Ciencias de la Ingeniería, titularse y continuar una carrera académica en la Región de O’Higgins. La Universidad Estatal de O’Higgins es una institución de 7 años que desde sus inicios ha promovido políticas para la equidad de género, sin embargo estas medidas pareciera ser aún insuficientes o no se le ha dado un seguimiento para ver su verdadero impacto en esta materia. La diferencia en el número de matrículas de mujeres vs hombres en carreras de Ciencias de la Ingeniería de Universidades chilenas es abismante, a pesar de la no existencia de diferencias inherentes/innatas entre hombres y mujeres que expliquen las brechas en los aprendizajes o trayectorias académicas en las matemáticas ( Bakker et al., 2021; Kersey et al., 2019; Lachance & Mazzocco, 2006; Spelke, 2005). Según Ing2030 (2018), el aumento de mujeres en carreras de ingeniería en Chile no ha sido significativo en un lapso de 10 años: 20% el año 2004 y 24% el año 2014. Tanto así que en el año 2019, el 7% de las mujeres que se titularon de pregrado en Chile, lo hicieron en las áreas de ciencia, tecnología, ingeniería y matemáticas (STEM), siendo el país con el porcentaje más bajo de los miembros de la OCDE (Ministerio de Ciencia, Tecnología, Conocimiento e Innovación, 2022). Para llevar a cabo este estudio se han usado metodologías cuantitativas y cualitativas. El estudio cuantitativo se realiza mediante encuestas online mientras que el estudio cualitativo es a través del desarrollo de Focus group. Se analizaron 468 encuestas online a estudiantes de enseñanza media de la Región de O’Higgins, 94 encuestas a estudiantes de las carreras de Ingeniería de la Universidad de O’Higgins y 25 encuestas a académicos(as) e investigadores del Instituto de Ciencias de la Ingeniería de la Universidad de O’Higgins. Adicionalmente, se analizaron los resultados de 3 focus groups a alumnas de enseñanza media de la comuna de Rancagua y 3 focus groups a alumnas de las carreras de Ingeniería de la Universidad de O’Higgins. Dentro de los resultados se observa que un 83% de los y las estudiantes de enseñanza media de la Región de O’Higgins considera que tanto hombres como mujeres avanzan con igual rapidez en sus carreras, un 84% de las y los estudiantes de carreras de Ingeniería de la Universidad de O’Higgins considera que mujeres y hombres tienen igualdad de avance en sus carreras, mientras que un 76% de académicos(as) e investigadores(as) estima que los hombres avanzan más rápido en su carrera. Se constató que estudiantes de enseñanza media, estudiantes de las carreras de ingeniería y académicas e investigadoras de la Región de O’Higgins experimentan brechas y barreras, sumado a la falta de confianza en sus capacidades y logros (Síndrome de la Impostora; Paterson & Vincent-Akpu, 2021). Adicionalmente, a pesar de considerar que en la Región de O’Higgins y en la Universidad de O’Higgins se promueve una cultura para la igualdad de género, el grupo en estudio tiene la creencia que las estudiantes y académicas de las Geociencias y Ciencias de la Ingeniería son más propensas a sufrir acoso. Asimismo, las estudiantes y científicas enfrentan importantes dificultades para compatibilizar la vida familiar y laboral. A través de este estudio buscamos visibilizar las principales dificultades que enfrentan estudiantes e investigadoras de esta área durante el desarrollo de su carrera. Tomar conciencia de la realidad de las mujeres en áreas STEM en la Región de O’Higgins permitirá tomar medidas más eficientes y eficaces tanto para la atracción como para evitar la fuga y/o estancamiento de estudiantes y científicas con alto potencial, permitiendo un acceso más igualitario en carreras STEM y un desarrollo en un espacio seguro y de respeto.
        Investigador/a Responsable