Plataforma de asistencia técnica para optimización de uso de coberturas para control térmico en el cultivo del cerezo

Chile es el tercer país con mayor superficie cultivada de cerezos y principal exportador a nivel mundial. El 82% de la superficie nacional se encuentra concentrada en la zona central, específicamente en las regiones del Maule y O’Higgins. Sin embargo, el liderazgo de nuestro país en los mercados internacionales puede estar en “jaque” por el cambio climático global. La zona central ha presentado un incremento en la frecuencia de eventos extremos de temperatura máxima y olas de calor, que ha afectado a la producción de cerezas durante los últimos años. Según la proyección nacional, se espera un incremento en la frecuencia y magnitud de los eventos térmicos extremos y el alza de las temperaturas impacta negativamente la calidad de la fruta y el rendimiento de los huertos de cerezo en 3 periodos críticos: desarrollo del fruto, postcosecha y receso invernal. Para enfrentar los embates climáticos se requiere el uso de herramientas tecnológicas que modifiquen el microclima del huerto, siendo una opción las coberturas textiles. El mercado se presenta con una amplia gama de opciones para diferentes momentos del proceso productivo, lo que ha generado efectos adversos debido al desconocimiento del manejo de las coberturas por los productores y ha impedido mejorar su competitividad. Por ello nuestra propuesta de valor busca validar el uso de las coberturas textiles en periodos poco explorados del ciclo productivo del huerto de cerezo y optimizar el uso de coberturas invernales y mallas fotoselectivas como herramienta tecnológica de control térmico. Se determinará la eficiencia de estas coberturas en los diferentes periodos críticos del ciclo productivo de huertos de cerezo en la zona central, junto con la estimación de índices de eficiencia de manejo por tipo de cobertura y condición climática. Con la información obtenida, se creará una plataforma virtual de asistencia técnica amigable para productores que los guíe en el uso eficiente de coberturas para control térmico.

Fabricación digital para Jóvenes Makers

La fabricación digital es un concepto que está revolucionando el modo en que se producen piezas y objetos. Hace referencia a procesos de manufactura en los que se usan máquinas controladas por una computadora para fabricar un objeto, previamente diseñado en algún software. La fabricación digital incluye tecnologías como impresión y escaneo 3D, corte láser y mecanizado CNC (control numérico computarizado); que junto al diseño CAD (diseño asistido por computadora) y programación permiten procesar archivos digitales para construir objetos tangibles. También se relaciona con el modelo educativo STEAM (ciencia, tecnología, ingeniería, arte y matemática) y con tecnologías que definen la próxima revolución industrial, la industria 4.0.
La fabricación digital puede ser considerada un medio para desarrollar competencias como la creatividad, la colaboración y el trabajo en equipo, la proactividad y el emprendimiento. Numerosas experiencias internacionales y nacionales en fabricación digital han demostrado ser eficaces en fomentar competencias transversales en estudiantes, a diferencia del simple uso de dispositivos electrónicos (por ejemplo, smartphones). La eficacia de la fabricación digital radica en que, si bien también implica el uso de dispositivos electrónicos, pone el foco en conceptualizar, desarrollar y construir un producto físico. En consecuencia, esta nueva filosofía basada en el “aprender haciendo” aumenta la motivación, otorga autonomía y brinda competencias laborales fundamentales para el siglo XXI.
La pandemia Covid-19 ha traído pérdidas irreparables, pero también grandes aprendizajes y desafíos tecnológicos. Se ha acelerado la transformación digital y se ha manifestado un gran potencial de desarrollo tecnológico local. Por otra parte, también se han visualizado brechas digitales y de género en la educación chilena. Desde el punto de vista del impacto en aprendizaje en contexto de pandemia, se ha determinado que la Región de O’Higgins podría ser una de las más perjudicadas por el cierre prolongado de los establecimientos educacionales (MINEDUC, 2020). Sumado a ello, es particularmente preocupante la diferencia, en detrimento de las niñas y las adolescentes, que ocurre con el desempeño en áreas STEAM, por lo crucial que estas resultan en las futuras oportunidades, nivel de ingresos y calidad de vida a la que podrán acceder (UNESCO, 2019).
La Estrategia Regional de Innovación identifica la baja formación e incorporación de nuevas tecnologías 4.0 como una brecha que limita la puesta en marcha de proyectos innovadores y la asociatividad entre los actores regionales. Indicadores comunes para medir la efectividad de la innovación empresarial y emprendimiento tecnológico son instrumentos de propiedad industrial, como patentes, y surgimiento de empresas de base tecnológica. Las estadísticas de la Región de O’Higgins no son buenas. Según los últimos datos de INAPI, apenas el 1,33% de las patentes solicitadas en Chile provienen de la Región de O’Higgins. Por otro lado, no existen registros de emprendimientos regionales de base tecnológica.
La incorporación de las tecnologías de fabricación digital en la formación de jóvenes makers puede fortalecer la educación STEAM, reducir la brecha digital y de género y potenciar los procesos de innovación empresarial y emprendimiento tecnológico en la Región de O’Higgins.

Dynamic modelling of kiwifruit pollination (Actinidia spp.): effect of temperature on pollen donors and the effective pollination period (EPP)

In this project, the research hypothesis is that in a scenario of climate change (IPCC 2014), the increase of mean air temperature by 2 °C triggers flowering asynchrony between pollen donors and female cultivars on kiwifruit species (Actinidia spp.) Then, the general objective is to model the impact of temperature changes on interaction between pollen donors and the effective pollination period (EPP) of kiwifruit cultivars (Actinidia spp.). In detail, the specific objectives are: (1) to determine flowering phenology and the effective pollination period (EPP) on kiwifruit cultivars; (2) to evaluate the effect of temperature on sensitivity of pollen-pistil interplay; and (3) to develop a dynamic model of kiwifruit pollination on crop value under potential scenarios of temperature changes.

The proposed methodology will be divided in three years. In the first year, flowering phenology of six pollen donors (male cultivars) and two female cultivars (one green-fleshed and other yellow-fleshed) will be characterized. Moreover, in female cultivars the length of time that female flowers can be successfully pollinated, commonly known as the effective pollination period (EPP), will be determined. The EPP may be restricted by limitations in three main events: stigmatic receptivity, pollen tube kinetics and ovule longevity, which will also be evaluated. On the other hand, a dynamic pollination model will be developed using the modeling software Stella®, based initially on literature review and grower information.
In the second year, two experiments will be conducted to evaluate the effect of temperature on sensitivity of pollen-pistil interplay: in planta in the field and in vivo in controlled chambers under heat treatments. Consequently, results of all experiments will be integrated on the dynamic pollination model.
Finally, in the third year, after the construction of the model, data of all inputs and outputs will be collected from several kiwifruit orchards of different regions and conditions. Part of these data will be used to find the model weaknesses and to determine how to improve it. The remaining data will be used on cross validation.

The main expected result is to determine the vulnerability of interaction between pollen donors and female cultivars by the increase of temperature. The dynamic model of kiwifruit pollination will be permit to predict present and future problems, which will help growers to optimize pollination managements (bee hives and/or supplemental pollen applications) in the short term. Furthermore, this model can be complemented with other submodels, as thinning, pruning, etc, in order to study simulations of orchard managements. In the long term, these results of heat stress impact on kiwifruit cultivars will be used in further research for establishing new screening criteria of best-adapted genotypes (pollen donors, for example) to Chilean conditions.

Desarrollo de una metodología predictiva para la estimación de calibre en kiwi

Este proyecto forma parte del Programa Tecnológico para la Fruticultura de Exportación Zona Centro-Sur 16PTECFS-6641 Especie Kiwi, Coejecutores: Consorcio de la Fruta – Pontificia Universidad Católica
El objetivo general es identificar, evaluar y desarrollar una metodología que permita determinar la
distribución de calibre en kiwi, variedad Hayward.

Transferencia: Coberturas fotoselectivas en kiwi

Actualmente, ante el escenario de cambio climático la fruticultura chilena enfrenta importantes desafíos, siendo los más críticos la adaptabilidad de las plantas a las nuevas condiciones edafoclimáticas y la escasez de mano de obra capacitada (FIA, 2017). Para afrontar el problema, el sector frutícola ha recurrido a diversas estrategias, entre ellas, la introducción de nuevas variedades con mejor adaptabilidad, bajos requerimientos de horas frío, alto valor agregado y mayor productividad, junto con la adopción de nuevas tecnologías y la diversificación de las especies en los huertos, de manera de asegurar la mano de obra durante toda la temporada.
El kiwi (Actinidia spp.) es uno de los cultivos que se perfila como una atractiva alternativa productiva por su creciente demanda mundial (3 millones ton), donde Chile se caracteriza por ser el tercer exportador (179.833 ton) después de Italia y Nueva Zelanda (FAO, 2017). Las regiones del Maule y O’Higgins representan cerca del 90% de la superficie nacional (respectivamente 50,8% y 37%), siendo la variedad “Hayward” (pulpa verde) tradicionalmente la más cultivada. Dadas las condiciones de alta demanda y mejores precios internacionales, en la última década se han introducido nuevas variedades de pulpa amarilla, las cuales presentan mayor rentabilidad en comparación a ´Hayward’. En particular, la Región de O’Higgins con 3.376 ha de kiwi en producción (equivalentes a 73.554 ton), se destaca por la mayor superficie de variedades de pulpa amarilla (50,4% del total nacional; 622 ha) (ASOEX, 2017). Sin embargo, estas últimas son conocidas por su mayor susceptibilidad al cancro bacteriano (Pseudomona syringae pv. actinidiae; Psa) y a eventos climáticos adversos (e.g. heladas y lluvias primaverales), por lo que se requiere adoptar nuevas estrategias de manejo agronómico.

La experiencia internacional menciona a los sistemas de cobertura como una óptima alternativa para contener y disminuir la presencia del cancro bacteriano del kiwi, reducir el riesgo por adversidades climáticas y mejorar la producción de los huertos. Bajo las condiciones regionales, existen experiencias en el uso de sistemas de cobertura en manzano, cerezo y vid, mientras que en kiwi sólo se han realizado algunas aproximaciones, lo cual constituye una oportunidad para aumentar la eficiencia productiva y la rentabilidad del sector frutícola local.
Objetivo general
Aumentar la competitividad de los productores de kiwi mediante la generación de directrices tecnológicas para el uso de sistemas de cobertura foto-selectivas en la Región de O’Higgins

Proyecto PAR Explora O’Higgins

Nodo de Ciencia Abierta: Co-creación de un modelo de Ciencia abierta para fortalecer el desarrollo de la ciencia y tecnología en la Macrozona Centro Sur de Chile en concordancia con su territorio y sociedad

Este proyecto busca conectar al ecosistema de la ciencia y tecnología con las fortalezas y necesidades de la sociedad enmarcado en el territorio de la Macrozona Centro Sur, que abarca las regiones del Libertador Bernando O’Higgins, del Maule, de Ñuble y del BioBío. Se han analizado siete dimensiones relevantes para el desarrollo de la Ciencia como son la infraestructura, el equipamiento disponible, el capital humano, la investigación, la innovación y emprendimiento, los laboratorios naturales y el sector productivo. Desde este análisis han emergido las áreas OECD de la Agricultura, la Ingeniería, la Educación y la Salud con potenciales de crecimiento y mayor impacto en sus habitantes.

Los objetivos específicos son: 1) Implementar un modelo de gobernanza de acuerdo a los desafíos y oportunidades identificadas y que permita mejorar la competitividad de Universidades, Centros de Investigación, y otras organizaciones representativas del ámbito público y privado; 2) Fortalecer competencias en innovación abierta, complejidad de innovación y ciencia abierta en el ecosistema de ciencia y tecnología, para analizar desafíos y oportunidades de la macrozona en un lenguaje común; 3) Implementar métodos y mejores prácticas de Ciencia abierta para su aplicación en el ecosistema de ciencia y tecnología de la macrozona en el desarrollo de hipótesis robustas y conectados con sus capacidades y ventajas territoriales.

Para realizar esta tarea se creará un comité de coordinación de la macrozona con la participación de la SEREMI de CTCI que convocará a académicos de disciplinas múltiples en concordancia con mesas temáticas transversales y específicas, en conjunto con el sector público y privado, grupo que denominaremos el ecosistema de ciencia y tecnología bajo el paradigma de ciencia abierta (eCTCI-CA), para co-crear un modelo de Ciencia abierta aplicado a la discusión de iniciativas las temáticas específicas propuestas: 1) Creación de modelos asociativos para el capital creativo, 2) Estructuras de convergencias de servicios territoriales, 3) Incorporación de nuevos modelos educativos, 4) Implementación de datos abiertos para el desarrollo de hipótesis, 5) Desarrollo de agricultura de nueva generación, 6) Inclusión de ruralidad sustentable, 7) Adaptación al cambio climático, 8) Desarrollo de Bioeconomía sostenible, 9) Implementado manufactura avanzada y nanomateriales, 9) Prevención y resiliencia del desastre, 10) Conectando investigación básica con la clínica aplicada a la salud pública.

Durante la ejecución del proyecto por 2 años el eCTCI-CA será guiado en actividades de creación de confianza y de competencias en el desarrollo de proyectos utilizando metodologías de ciencia abierta, innovación abierta y ágiles. Colaborando en equipos multidisciplinarios con actores claves del sector público y privado para fortalecer la vinculación de las preguntas de investigación con el territorio y la sociedad componente.

El impacto esperado de este proyecto es fortalecer la vinculación de las preguntas científicas con su territorio y sociedad, generar hipótesis y conocimiento desde equipos multidisciplinarios y colaborativos, y de manera recíproca conectar las políticas públicas con los requerimientos de eCTCI-CA bajo un paradigma de Ciencia Abierta. Para mantener la sustentabilidad en el tiempo de la iniciativa se propone la creación de una gobernanza con responsabilidades y liderazgo compartidos entre los asociados al proyecto y la creación de un modelo de transferencia de conocimiento al sistema público y privado.

Transferencia: cámara de simulación agroclimática

La agricultura es una de las principales actividades económicas de la Región de O’Higgins, con un PIB que alcanza al año 2021 el 12,8% de representación a nivel nacional. El éxito productivo regional
depende en gran medida de las condiciones edafoclimáticas que preponderan en las zonas cultivables y/o aptas para la agricultura. Sin embargo, el actual escenario de cambio climático genera
una alteración de estas variables climáticas, con cambios evidentes en la variabilidad de las precipitaciones, frecuencia e intensidad de los días cálidos y fríos, y eventos climáticos extremos
(heladas, granizo, entre otros). Consecuentemente, el impacto del cambio climático ha modificado y seguirá transformando los sistemas de producción de diversos cultivos a nivel nacional y local,
incluyendo el cambio de las zonas productivas.
Esta nueva realidad climática requiere de la pronta generación de conocimiento y la capacidad de innovar y desarrollar tecnologías inteligentes para adaptar y asegurar la producción de alimentos.
Aunque existe conocimiento de los posibles efectos del cambio climático sobre la agricultura, la literatura indica que la diversidad geográfica y climática de la producción agrícola no permite predecir
con precisión los impactos locales del cambio climático en los diferentes cultivos. Por lo tanto, la mejor forma de reducir esta incertidumbre climática es a través del desarrollo de tecnología, el
conocimiento y la innovación aplicada para adaptar y asegurar la producción de alimentos. De hecho, la Conferencia de las Partes de la Convención de Cambio Climático realizada en París (COP21),
enfatiza la necesidad de avanzar hacia una “agricultura climáticamente inteligente”, es decir, una actividad que entre en sintonía con los cambios globales, con mínima huella ambiental, altamente
eficiente en el uso de insumos, resiliente, productiva y sostenible.
Este proyecto plantea la construcción de infraestructura climáticamente inteligente como la primera cámara de simulación climática regional, la cual permitirá determinar el impacto de diferentes
escenarios de cambio climático en cultivos y variedades de importancia para los agricultores de la Región de O’Higgins de manera anticipada. Se busca responder las interrogantes asociadas a qué
cultivos son más idóneos para las distintas zonas geográficas de la Región de O’Higgins, bajo condiciones extremas de temperatura, humedad ambiental y disponibilidad de agua, entre otros
aspectos. Con la información generada se desarrollarán directrices tecnológicas y sistemas de bajo costo para la medición de parámetros ambientales, con el fin de brindar a los agricultores soporte
para la toma de decisiones a nivel local, y consecuentemente fortalecer la competitividad del sector agrícola de la Región de O’Higgins.

SaviaLab Región de O’Higgins

SaviaLab promueve la innovación temprana en jóvenes rurales entre 15 y 18 años, de la mano de sus comunidades escolares y universidades regionales, a través de una fase formativa y una fase concursable regional. SaviaLab se ejecuta en establecimientos técnicos profesionales, a través de la incorporación de una metodología para trabajar colaborativamente en la detección de oportunidades de innovación, que luego se transforman en soluciones pertinentes y relevantes para sus territorios.

Para esto, la Fundación ha coordinado un trabajo colaborativo con la Universidad de O’Higgins que se encargará de potenciar y asesorar el trabajo de los jóvenes en las región de O’Higgins.

Desarrollo de familias de medios-hermanos de Lagenaria siceraria para evaluación de las tasas de injertación-compatibilidad con sandía y del sistema de arquitectura radical en condiciones de riego deficitario

Chile es uno de los principales países donde se llevan a cabo diversos programas de mejoramiento genético de plantas. En estos, se evalúa, selecciona y multiplica el germoplasma de diversos cultivos para desarrollar nuevos cultivares y/o variedades vegetales. En ese contexto, durante décadas los fitomejoradores se han centrado tradicionalmente en la selección direccional o artificial de las características de las plantas para obtener mayores rendimientos en ambientes o condiciones particulares. De hecho, la selección artificial ha producido cultivares notablemente productivos que son estables en diversos ambientes y/o localidades. Por otro lado, la capacidad de una planta para modificar su fenotipo en respuesta al medio ambiente (es decir, la plasticidad) se ha propuesto como objetivo de mejoramiento para aumentar la productividad agrícola.

Se sabe que la plasticidad del fenotipo corresponde a un rasgo complejo con base hereditaria, y durante la última década varios especialistas han comenzado a estudiarla en diversos cultivos y rasgos. La mayoría de los rasgos incluyen morfología, rendimiento de grano y resistencia a diferentes estreses de tipo abiótico, que son deseables para fines de fitomejoramiento. Específicamente, la plasticidad de los rasgos de la raíz se ha propuesto como un objetivo clave para el desarrollo de cultivos más productivos en ambientes variables, especialmente en condiciones de déficit hídrico.

Para dar continuidad al proyecto Fondecyt iniciación 2018-2022, en la propuesta del fondo puente se plantea generar una población de familias de medios-hermanos de Lagenaria siceraria para su evaluación en experimentos de campo en condiciones de déficit hídrico. En este contexto, los objetivos específicos planteados son:

Evaluar el porcentaje de injertación en una población de familia de medios hermanos de L. siceraria con variedades de sandía mediante tasas de prendimiento-compatibilidad
Caracterizar el sistema de arquitectura de raíces en una población de familia de medios-hermanos de Lagenaria siceraria

Para lograr lo anterior, se plantean las siguientes actividades: 1) ingresar material genético de L. siceraria (en forma de semillas) desde Banco de Germoplasma de Japón, 2) multiplicar semillas y generar una progenie de familias de medios-hermanos, 3) injertar estos portainjertos con variedad(es) comercial(es) de sandía y evaluar las tasas de prendimiento-compatibilidad de la injertación y 4) caracterizar los rasgos de la arquitectura del sistema radical en condiciones de riego deficitario.

En detalle, los aspectos que pretende abordar el proyecto puente se plantean con el propósito de fortalecer y mejorar la competitividad del PI en término de publicaciones. El desarrollo de estas actividades dará continuidad a la investigación del PI y permitiría aumentar el número e impacto de las publicaciones para una próxima postulación a fondos externos, o en su defecto avanzar con la investigación para no afectar los tiempos de desarrollo de la investigación del PI. Por otra parte, este fondo apoyará la investigación del PI, considerando su reciente postulación al concurso Fondecyt Regular.

Finalmente, esta investigación representa una propuesta novedosa que contribuye al estudio de la plasticidad de los rasgos de la raíz y la variación de la arquitectura del sistema radical en una población de familias de medios hermanos de L. siceraria en el contexto de un programa de mejoramiento genético. Además, este trabajo también podrá contribuir con la identificación de genes y alelos que serían relevantes para establecer las diferencias moleculares en las respuestas plásticas de L. siceraria tanto en condiciones de déficit hídrico y normales de riego. De hecho, también se espera que algunas de estas accesiones sean consideradas en futuras investigaciones como portainjertos potenciales para cucurbitáceas en ambientes específicos.