The project covers the following topics: vibrations, multiphase flow, and pipes. All of them are strongly related to Mechanical Engineering and its applications.
Flow-Induced Vibration in Pipes subjected to Gas-Liquid Multiphase Flow
Fabricación digital para Jóvenes Makers
La fabricación digital es un concepto que está revolucionando el modo en que se producen piezas y objetos. Hace referencia a procesos de manufactura en los que se usan máquinas controladas por una computadora para fabricar un objeto, previamente diseñado en algún software. La fabricación digital incluye tecnologías como impresión y escaneo 3D, corte láser y mecanizado CNC (control numérico computarizado); que junto al diseño CAD (diseño asistido por computadora) y programación permiten procesar archivos digitales para construir objetos tangibles. También se relaciona con el modelo educativo STEAM (ciencia, tecnología, ingeniería, arte y matemática) y con tecnologías que definen la próxima revolución industrial, la industria 4.0.
La fabricación digital puede ser considerada un medio para desarrollar competencias como la creatividad, la colaboración y el trabajo en equipo, la proactividad y el emprendimiento. Numerosas experiencias internacionales y nacionales en fabricación digital han demostrado ser eficaces en fomentar competencias transversales en estudiantes, a diferencia del simple uso de dispositivos electrónicos (por ejemplo, smartphones). La eficacia de la fabricación digital radica en que, si bien también implica el uso de dispositivos electrónicos, pone el foco en conceptualizar, desarrollar y construir un producto físico. En consecuencia, esta nueva filosofía basada en el aprender haciendo aumenta la motivación, otorga autonomía y brinda competencias laborales fundamentales para el siglo XXI.
La pandemia Covid-19 ha traído pérdidas irreparables, pero también grandes aprendizajes y desafíos tecnológicos. Se ha acelerado la transformación digital y se ha manifestado un gran potencial de desarrollo tecnológico local. Por otra parte, también se han visualizado brechas digitales y de género en la educación chilena. Desde el punto de vista del impacto en aprendizaje en contexto de pandemia, se ha determinado que la Región de OHiggins podría ser una de las más perjudicadas por el cierre prolongado de los establecimientos educacionales (MINEDUC, 2020). Sumado a ello, es particularmente preocupante la diferencia, en detrimento de las niñas y las adolescentes, que ocurre con el desempeño en áreas STEAM, por lo crucial que estas resultan en las futuras oportunidades, nivel de ingresos y calidad de vida a la que podrán acceder (UNESCO, 2019).
La Estrategia Regional de Innovación identifica la baja formación e incorporación de nuevas tecnologías 4.0 como una brecha que limita la puesta en marcha de proyectos innovadores y la asociatividad entre los actores regionales. Indicadores comunes para medir la efectividad de la innovación empresarial y emprendimiento tecnológico son instrumentos de propiedad industrial, como patentes, y surgimiento de empresas de base tecnológica. Las estadísticas de la Región de OHiggins no son buenas. Según los últimos datos de INAPI, apenas el 1,33% de las patentes solicitadas en Chile provienen de la Región de OHiggins. Por otro lado, no existen registros de emprendimientos regionales de base tecnológica.
La incorporación de las tecnologías de fabricación digital en la formación de jóvenes makers puede fortalecer la educación STEAM, reducir la brecha digital y de género y potenciar los procesos de innovación empresarial y emprendimiento tecnológico en la Región de OHiggins.
Geographic Information System based Web Project Villa Mujer to Identify Services for Domestic Violence Care
Analytical and Numerical Solutions of Two-Phase Flow-Induced Vibration Phenomenon in Pipes
Mathematical model for the prediction of a dynamic response subjected to two-phase gas-liquid internal flow
Experimental Study of the Inverted-Shroud Gas Separator for Pumped Wells aimed to Optimization and Scale-up
Effect of Pressure and Density of the Gas on the flow-pattern transition in gas-liquid stratified horizontal flow
Simulation and Analysis of the Dynamic Response of a Clamped-Clamped Pipe conveying Gas-Liquid flow, using Galerkin Method
Transferencia Fábrica Digital de la Sexta
Los laboratorios de fabricación digital son espacios que cuentan con maquinaria y personal capacitado para facilitar el diseño y desarrollo de prototipos y para promover la innovación en productos, procesos y servicios. Se conciben como laboratorios que facilitan herramientas de fabricación avanzada y capacidades a la comunidad en general, pudiendo ser más enfocados a emprendedores, empresas e institutos de investigación. Una característica común es que sirven como plataforma para estimular el aprendizaje y la invención en la comunidad. Las máquinas y capacidades técnicas instaladas en estos laboratorios brindan la oportunidad de encontrar soluciones innovadoras a problemas comunes y ser incubadores de microemprendimientos que resuelvan problemas de forma innovadora y sustentable.
El primer laboratorio de fabricación digital, junto con el concepto FabLab, aparece en el MIT (Massachussets Institute of Technology, Estados Unidos) en el año 2000. Actualmente, existe una red mundial de alrededor de 3000 FabLabs distribuidos en 5 continentes. En Chile se pueden encontrar 17 de estos laboratorios, la mayoría de ellos concentrados en la Región Metropolitana; 2 en la Región del Maule y ninguno en la Región de OHiggins. La ausencia de un laboratorio regional está en concordancia con estadísticas del año 2016 que reportan apenas 118 m2 de espacios dedicados a innovación en la Región de OHiggins frente a 27 936 m2 en la Región Metropolitana. En ese contexto, la Región de OHiggins es la segunda región con menor superficie dedicada a innovación.
La instalación de un laboratorio de fabricación digital en la Región de OHiggins se identifica como una gran oportunidad para promover la innovación, brindando acceso a equipos y a capacitaciones sobre herramientas de fabricación avanzada a industrias y emprendedores regionales.
PROBLEMS IN OPTIMAL STOPPING THEORY
Los problemas en la teoría de parada óptima se aplican a muchas situaciones en la vida. Por ejemplo, cuando decidimos mudarnos, tenemos que determinar cuándo dejar de buscar una casa; al estacionar el auto, debemos decidir cuándo tomar un lugar disponible en lugar de seguir buscando uno mejor; cuando ocurre un terremoto, el gobierno debe decidir cuándo dejar de observar y comenzar a evacuar a la población, etc. Aunque algunas de estas decisiones deben tomarse con más frecuencia que otras y el riesgo involucrado no es el mismo en todas las situaciones, la idea detrás de todos estos problemas es similar: un tomador de decisiones observa un proceso que evoluciona en el tiempo e implica cierta aleatoriedad. Basándose solo en lo que se conoce, se debe tomar una decisión que maximice la recompensa o minimice el costo. Entonces, la pregunta principal aquí es: ¿cuándo deberíamos detenernos? Responder a esta pregunta es importante para tomar buenas decisiones. Sin embargo, no siempre es fácil debido a la información incompleta sobre el futuro. Esto llevó al surgimiento de un subcampo de la teoría de probabilidad, la teoría de parada óptima, que tiene como objetivo mejorar las probabilidades de tomar una buena decisión. El objetivo de este proyecto es estudiar diferentes problemas en este campo, modelándolos y obteniendo resultados teóricos así como también estudiar el impacto de los resultados en la práctica.