This project aims to determine the intensive magmatic conditions and eruption triggering during the Mondaca-forming eruption (Southern Andes), likely occurred in ~1760 CE. We will apply geothermometers, geobarometers, and Rhyolite-MELTS. These results would provide new insight into the generation of hybrid rhyolitic eruptions.
RHY2: Researching hybrid rhyolitic eruptions
MICCHI: Mecanismos e Incentivos Contra la Crisis HIdrica
La crisis hídrica provocada por el calentamiento global es uno de los problemas más importantes que afectan a regiones agrícolas como la sexta Región de OHiggins. Este proyecto de vinculación internacional tiene como objetivo principal investigar distintos mecanismos para la asignación de recursos hídricos e épocas de escasez. En particular, se analizará el caso en que se tienen multiples usos de agua: distintos tipos de industrias (cupríferas y agrícola por ejemplo) y uso urbano. Este proyecto de vinculación internacional es liderado por el equipo nacional conformado por investigadores de la Universidad de O’Higgins y Universidad de Chile. Este proyecto incluye visitas del equipo nacional a los centros INRIA Sophia Antipolis, y INRAE en Montpellier, así como la organización de un workshop en la Universidad de OHiggins.
Magmatic and Metallogenic Evolution of the MaricungaEl Indio Belt
Tracing the links between the volatile composition and oxygen fugacity of magmas, their ore fertility, and crustal thickness: A regional scale investigation of the Miocene to Mio-Pliocene arc segment of the Andes of central Chile
The world’s transition to using cleaner energy sources to address climate change has led to a sharp rise in the demand for base and precious metals. Consequently, discovering new ore deposits to meet this growing demand and prevent supply shortages has emerged as one of the greatest challenges of the 21st century. Discovery of new magmatic-hydrothermal ore deposits can be improved based on a fundamental understanding of the geological processes that control the flux and focusing of ore-constituting elements in the Earths crust, and by identifying the differences between the bulk-rock and mineral chemistry of ore-forming and ordinarybarrengranitoids. Large metal anomalies in the Earths upper crust, such as porphyry copper-(molybdenum) deposits (PCDs), occur in intimate association with oxidized and water-rich arc magmatism in subduction zones. However, these deposits occur in restricted crustal domains and form in response to specific tectono-magmatic events, indicating that not all arc magmas have the same ore-forming potential. Understanding why only some magmas produced large PCDs while most other arc magmas remain barren is a fundamental scientific question and key to developing efficient exploration strategies.
The volatile element composition of arc magmas, including water, sulfur, and halogens such as chlorine and fluorine, as well as their oxygen fugacity, exert a critical control on their ore-forming potential (i.e., ore fertility). These components are not only key to the complexation and transport of ore metals during hydrothermal activity, but also influence the amount of ore metals transported by magmas and the efficiency to which they are transferred from magmas to exsolved fluids. Magmatic differentiation in lower crustal hot zones beneath thick crustal regions is expected to enhance the volatile element budget and oxygen fugacity of evolving magmas that are discharged to the upper crust. This occurs due to the accumulation of incompatible volatile elements during successive cycles of recharge by mafic magmas and crystallization, facilitated by the deeper and hotter conditions beneath thicker arc crusts. As such, an increasingly recognized hypothesis holds that ore-forming magmas display a particularly increased budget of volatile elements and higher oxygen fugacities when compared to barren arc magmas, and that this is largely influenced by the arc crust thickness. The proposed work will test this hypothesis by focusing on the Miocene to Mio-Pliocene magmatism and associated world-class PCD mineralization in the Andes of central Chile.
From the Early Miocene to the Mio-Pliocene, the arc segment located between latitudes ~3334.5° S in the Andes of central Chile has seen a continued increase in crustal thickness and has evolved from being barren in the Early Miocene to producing some of the largest PCDs of the world in the Mio-Pliocene, such as El Teniente and Rio Blanco-Los Bronces. This geological scenario and the spatial and age distribution of the associated outcropping intrusive rocks offer a unique opportunity to investigate the temporal evolution of the volatile composition of magmas and its consequences for ore fertility. The goal of this proposal is to examine, adopting a regional scale perspective, the evolution in the volatile composition and oxygen fugacity of magmas produced in this arc segment and its relationship to magmatic ore fertility, as well as how this may have been influenced by changes in crustal thickness.
To achieve this, I will sample an extensive suite of granitoids that represent a continuum from Early Miocene to Mio-Pliocene magmas, including porphyry-forming intrusions. By combining zircon petrochronology, apatite, biotite, and amphibole mineral chemistry, in conjunction with the bulk-rock composition of intermediate to felsic intrusive rocks, I will be able to constrain relative changes in the hydration state, sulfur contents, halogen and oxygen fugacities, as well as in their associated crustal thickness during the evolution of the selected arc segment. This will be done by implementing a combination of cutting-edge analytical techniques, including synchrotron-based sulfur X-ray absorption near edge structure spectroscopy, electron probe microanalysis, (laser ablation) inductively coupled plasma mass spectrometry, and X-ray fluorescence spectrometry. I aim at (1) testing the differences in the volatile composition of barren and ore-forming intrusive rocks; (2) determining whether there is a gradual change in the volatile systematics of magmas during the evolution of the studied arc segment; and (3) analyzing the relationship between variations in crustal thickness and the volatile composition of associated magmas.
The results of this proposal will lead to a better understanding of the magmatic controls underpinning the formation of giant PCDs and will provide valuable insights into identifying the differences between the bulk-rock and mineral chemistry of ore-forming and barren granitoids as tools for vectoring mineralized regions.
Fortalecimiento de la investigación y formación científica en la Universidad de O ́Higgins mediante la incorporación de un espectrómetro de fluorescencia de rayos X dispersivo de longitudes de onda
Fondequip Mediano EQM230002
Centro UOH de BioIngeniería (CUBI)
Proyecto interno de la UOH de carácter multidisciplinario que busca crear mapas moleculares multiómicos de los cánceres prevalentes en la región, utilizando tecnologías de vanguardia y algoritmos avanzados.
Centro UOH de Bioingeniería (CUBI)
El cáncer es una enfermedad genética compleja y mortal que afecta a un gran número de personas en Chile, con una alta tasa de mortalidad y un aumento constante en el número de casos. Ante esta realidad, es crucial implementar la Medicina de Precisión en el país para brindar un tratamiento personalizado y mejorar los resultados para los pacientes. El Centro UOH de BioIngeniería (CUBI) se propone liderar este avance, enfocándose en la región de O’Higgins, Chile.
El CUBI busca crear mapas moleculares multiómicos de los cánceres prevalentes en la región, utilizando tecnologías de vanguardia y algoritmos avanzados. Esto permitirá comprender los perfiles genéticos y moleculares del cáncer, así como la heterogeneidad y evolución somática de los tumores chilenos. El equipo propuesto por CUBI, con su destacada capacidad de secuenciación genómica, procesamiento masivo de datos y experiencia en biología molecular y computacional, desempeñará un papel protagónico en el logro de estos objetivos.
El CUBI se organiza en tres líneas de investigación principales. La primera línea se centra en las tecnologías genómicas para el mapeo de genotipos, fenotipos y evolución tumoral, dirigida por el Dr. Di Genova. Su objetivo es comprender los factores genéticos que contribuyen al cáncer, así como la variabilidad molecular y la evolución somática de los tumores chilenos. La segunda línea, liderada por el doctor Henao, se enfoca en las tecnologías de imagen para el mapeo y evaluación de fenotipos tumorales. Mediante el uso de imágenes histológicas y de ultrasonido, combinadas con la inteligencia artificial y modelos físico/matemáticos, se busca identificar patrones morfológicos y topológicos asociados a biomarcadores o procesos mutacionales específicos de los tumores. La tercera línea de investigación, liderada por el Dr. Krause, se centra en la utilización de modelos preclínicos para validar las relaciones fenotipo-genotipo desCUBIertas en las líneas de investigación anteriores y la creación de un biobanco regional. Esto permitirá realizar estudios moleculares, clínicos y epidemiológicos en la región de O’Higgins, fortaleciendo la base de conocimientos y facilitando la aplicación de los hallazgos en la práctica clínica.
El CUBI cuenta con un equipo interdisciplinario de investigadores jóvenes, intermedios y senior, con líneas de investigación claras y bien definidas. Además, se ha establecido una sólida red nacional e internacional de colaboración con instituciones líderes en investigación del cáncer, como el IARC de Lyon, Francia, el ICR de Londres, UK y hospitales e instituciones en Chile.
El CUBI busca posicionarse como un centro pionero en la investigación en medicina de precisión oncológica en Chile. Su objetivo principal es comprender y mapear la biología única de los pacientes chilenos/as con cáncer, con el fin de brindar tratamientos más efectivos y mejorar las oportunidades para la región. Con su infraestructura, equipo, red de colaboración y enfoque multidisciplinario, el CUBI tiene el potencial de generar un impacto significativo en la sociedad chilena al avanzar en la comprensión del cáncer y la implementación de estrategias de tratamiento personalizado. Proyectamos que la operación del CUBI tendrá un impacto positivo en la región y país en varios aspectos:
1. Mejorar la atención del cáncer: El CUBI permitirá una mejor comprensión de las características genéticas y moleculares de los tumores en la población regional y nacional. Esto conducirá a un diagnóstico más preciso, una estratificación más efectiva de los pacientes y una selección más precisa de los tratamientos. Como resultado, los pacientes recibirán terapias más efectivas, lo que mejorará sus resultados clínicos y su calidad de vida. 2. Avances científicos y tecnológicos: El centro promoverá el desarrollo y la aplicación de tecnologías de vanguardia y métodos de análisis de datos avanzados. Esto fomentará la investigación científica del cáncer y permitirá descubrir nuevas asociaciones genéticas y moleculares, así como identificar posibles blancos terapéuticos. Estos avances no solo beneficiarán a los pacientes de cáncer en Chile, sino que también contribuirán al conocimiento global en la lucha contra esta enfermedad. 3. Formación y educación: El centro brindará oportunidades de formación y capacitación para estudiantes, investigadores y profesionales de la salud interesados en la medicina de precisión en oncología. Esto fortalecerá la capacidad científica y clínica de la región, permitiendo la formación de especialistas altamente calificados en el diagnóstico y tratamiento del cáncer. 4. Impacto socioeconómico: La detección temprana, el tratamiento personalizado y la reducción de los efectos secundarios innecesarios pueden mejorar la eficiencia de los sistemas de salud y disminuir los costos asociados con el cáncer. Además, la generación de conocimiento científico y tecnológico puede impulsar la innovación y el desarrollo de la industria biotecnológica en la región, creando oportunidades económicas y empleo especializado.
En resumen, el CUBI tiene el potencial de generar un impacto significativo en la sociedad regional al mejorar la atención médica, impulsar la investigación científica, fortalecer la capacitación y la colaboración, y tener repercusiones socioeconómicas positivas. Al comprender y abordar la complejidad biológica del cáncer en la población chilena, se allana el camino para una atención más efectiva y personalizada, y se brinda esperanza a los pacientes y sus familias en la lucha contra el cáncer.
CUARTO CONCURSO NACIONAL DE FINANCIAMIENTO BASAL PARA CENTROS CIENTÍFICOS Y TECNOLÓGICOS DE EXCELENCIA PIA: Center for Mathematical Modeling.
Center for Mathematical Modeling.
Exploring designing ROS release materials for biofilm control of L. monocytogenes: Understanding molecular and genetic bacterial mechanisms under food-processing environments conditions.
Listeria monocytogenes (Lm) is a foodborne pathogen that causes listeriosis, a severe invasive disease, with
mortality rates as high as 30 %. This pathogen has caused several foodborne outbreaks and product recalls
worldwide, with significant economic consequences for the food industry. Lm can resist many stresses used
in food-processing environments (FPE) to control bacterial growth. Biofilm formation is another strategy that
allows Lm to persist in FPE and contaminate foods. In natural environments, biofilms often consist of mixedspecies communities with dynamic interactions between different species. The structure and persistence of
these biofilms are determined by community compositions, cooperative development, genomic background,
environment-responsive gene expression, and the material on which the biofilm forms, among others. The
design of materials with anti-bacterial and anti-biofilm properties is an emerging strategy to control the
presence of foodborne pathogens in the FPE. Smart surfaces with on-demand antimicrobial protection
through physical activation are ideal for this application. For instance, conductive polymers and
piezocatalytic materials generate reactive oxygen species (ROS) by photothermal or mechanical stimulus,
respectively. To further advance in the design of effective ROS-releasing antibiofilm materials, it is essential
to understand the microbial interactions occurring in biofilms and how molecular mechanisms are regulated
by the pathogen under ROS-based stress conditions. In this study, we hypothesize that The efficacy of ROSreleasing antibiofilm materials can be modulated based on knowledge of the interactions between Lm isolates
and other species on biofilms formed under FPE simulated conditions and by identifying specific molecular
mechanisms regulated by Lm isolates that persist under these environmental conditions. This research will
take an interdisciplinary approach, integrating knowledge from different fields (microbiology, molecular
biology, chemistry, and materials science) to better understand the mechanisms involved in Lm biofilm
formation under FPE conditions and use this information to design efficient materials to control bacterial
contamination. Our main aim is to investigate the interplay between Lm and other bacteria in ROS-releasing
antibiofilm materials under FPE conditions and identify the molecular mechanisms that Lm activates. Specific
aim-1 To define the best condition for tailor-made ROS generation in conductive polymers and
polymer/ZnO composites able to control Lm mixed biofilms. We will design and assess the ROS
generation capabilities of conductive polypyrrole (PPy) and piezocatalytic polymer/ZnO materials. We
currently have a collection of 300 Lm strains isolated from various sources. Approximately 50% of these
strains have had their whole genomes sequenced. The effect of ROS-releasing materials on cell adhesion and
biofilm formation will be tested for Lm strains in the presence of other bacterial species isolated from FPE
(mixed biofilm) at 8ºC. We will identify the best technical conditions of the ROS-releasing material to control
or reduce Lm biofilm formation. In addition, we will know if the Lm strains have different levels of tolerance
to ROS under the conditions that we will test. Specific aim-2: To identify Lm genetic features associated
with tolerance on ROS-releasing materials. Additional Lm strains from our collection will be sequenced.
We will also have access to Lm strains isolated from listeriosis outbreaks with their genome sequences. We
will analyze the genomes of Lm strains exhibiting varying levels of biofilm tolerance on ROS-releasing
materials under FPE conditions. We will evaluate the association between genomic elements (virulence genes,
resistance determinants, and other genomic variations) and the tolerance levels of the ROS-releasing
materials to identify new genomic elements associated with biofilm formation. Specific aim-3: To identify
molecular programs and ecological roles activated by Lm in response to ROS-releasing material
under FPE conditions One material with adjusted photothermal and mechanical ROS generation will be
selected to evaluate the global transcriptional response of Lm isolates able to tolerate ROS-releasing
materials. We will evaluate this response considering FPE conditions: low temperature and mixed biofilms.
In this way, we will identify if some Lm isolates activate specific molecular mechanisms that are associated
with the persistence/or higher tolerance to ROS-releasing materials under FPE conditions. Expected
outcomes: This research will contribute to advancing the antibiofilm material design, understanding Lm
genetic characteristics, and identifying molecular mechanisms activated under conditions used in food
processing areas, thus promoting improved food safety and industry practices.
New computational algorithms to elucidate the genetic architecture and functional impact of large-scale rearrangement in prevalent Chilean cancers.
The Chilean government recently launched the national cancer plan to increase survival rates and reduce cancer incidence, which is projected to become the first cause of death in the Chilean population. Only in 2020, more than 55,000 new cases of cancer were registered. Therefore, starting the molecular characterization of the prevalent cancers of the Chilean population is urgent since this can inform therapeutic decisions and thus promote more specific treatments for patients, positively impacting survival rates and prevention.
Due to the constant improvement of sequencing technologies, cancer research increasingly relies on the interpretation and analysis of high-dimensional genomic data. Genomic cancer analysis has revealed that the mutation repertoire of tumors is vast and goes from single nucleotide variants to whole-genome duplications. Structural variants (SVs) and copy number alterations are significant drivers of cancer proliferation and represent the building blocks of complex mutational processes involving the rearrangement of large genomic regions. These complex genomic rearrangements have functional consequences (e.g., gene fusion formation, inactivation of tumor suppressor) and have been associated with lower survival and poor response to immunotherapy. The patterns of small somatic variants have been well studied and characterized in human cancers. However, the genetic architecture and functional consequences of complex genomic rearrangements, despite their clinical significance, still need to be explored due to algorithmic and technological limitations. Therefore, the aims of this proposal are first to develop novel computational tools to fully characterize the genetic architecture of complex genomic rearrangements and second to study their functional impact on tumor gene expression programs through the lens of a solid theoretical framework.
Methodologically, the de novo assembly of genomes is the only approach that allows a complete and unbiased characterization of all genomic alterations. Recently, we developed WENGAN, a new algorithm for the ultrafast, accurate, and complete de novo reconstruction of human genomes combining short and long reads technologies. Initial validation of WENGAN for de novo reconstruction of cancer genomes enabled the discovery of a large degree of tumor genomic reorganization with thousands of SVs. The latter remains elusive when using alternative algorithms and technologies. Therefore, this experience represents a solid foundation for developing this proposal. We will work with the following specific objectives: 1) Develop efficient algorithms to reconstruct haplotype-resolved genomes; 2) combine haplotype-resolved genomes and variation graphs with building complete structural variant maps of tumors; 3) study the functional impact of complex SVs at the single-cell level; and 4) Infer from multi-omic data the tumor tasks (trade-offs) using the multi-task evolution theory. We have assembled a multidisciplinary network of national and international (France and Germany) experts in algorithms, sequencing technologies, and cancer genomics to develop these objectives. Additionally, we compromise the mentoring and training of undergraduate and magister students by offering thesis topics directly related to the proposal’s goals.
In summary, we propose an approach that integrates the development of new computational algorithms, a solid theoretical framework, and the generation of state-of-the-art multi-omic data to study the genetic architecture and functional impact of large-scale genomic rearrangements in a prevalent Chilean cancer. The project will deliver, in four years, the first haplotype-resolved Chilean genome, the first graph reference of Chilean individuals, and the first multi-omic characterization of a prevalent Chilean cancer.