La ocurrencia de desastres asociados a amenazas naturales representa un desafío muy importante para Chile. Los frecuentes incendios en territorios forestales, los costos asociados a aluviones e inundaciones como las ocurridas en los inviernos de 2021 y de 2023 en la región de OHiggins, e incluso la permanente amenaza de terremotos y volcanes, representan enormes costos para los territorios. Recientemente, la institucionalidad pública ha avanzado en el desarrollo de políticas de prevención de desastres con la aprobación de la Ley 21.364 (2021), creando el Sistema Nacional de Prevención y Respuesta ante Desastres (SINAPRED), sustituyendo la Oficina Nacional de Emergencia (ONEMI) por el Servicio Nacional de Prevención y Respuesta ante Desastres (SENAPRED).
La ciencia tiene mucho que aportar a esta nueva institucionalidad pública. La Universidad de OHiggins (UOH), por ejemplo, colabora con SENAPRED OHiggins a través de la Mesa de Peligros Geológicos, instaurada el año 2021. No obstante, el desafío de la prevención de desastres y el fomento de la resiliencia necesita otras perspectivas que consideren las características de los espacios geográficos donde se producen los riesgos. Se necesita un trabajo colaborativo con la institucionalidad pública y la comunidad local, pero sobre todo, una perspectiva interdisciplinaria que aúne los conocimientos de la ciencia social y natural.
La propuesta presentada busca generar una red que vincule a investigadores/as nacionales (UOH y Universidad de Chile) con investigadores de universidades de Países Bajos (Universidad Libre de Amsterdam) y Dinamarca (Universidad de Copenhague), para realizar actividades de intercambio de experiencias e investigación aplicada. Estos investigadores han logrado incidir en políticas públicas y estrategias a nivel local y regional en diversos países de Europa. Siguiendo una mirada multi-sectorial y nutridos de varias disciplinas, estos expertos han desarrollado perspectivas, herramientas y conocimientos de los cuales, sin duda, podemos aprender dada la coyuntura chilena con su nueva institucionalidad.
El proyecto contempla tres etapas para crear y potenciar esta red. Primero, el equipo nacional visitar Ámsterdam y Copenhague para vincularse con equipos interdisciplinarios, intercambiando experiencias de trabajo aplicado. Destaca el trabajo que realiza el equipo de Chile con SENAPRED OHiggins, y el trabajo aplicado en Europa con el Proyecto LINKS
(https://links-project.eu/). Segundo, un experto de Europa visitará la UOH. En esta visita, el invitado participará en reuniones y talleres, y colaborará con investigación aplicada en la región. Y tercero, el proyecto realizará una serie de eventos presenciales, como un seminario nacional con el experto internacional, además de talleres aplicados con diferentes partes interesadas. A estos eventos se invitará a representantes de organismos públicos, académicos/as de otras instituciones y a la comunidad interesada en general.
Como resultado, esta red permitirá: (1) intercambiar experiencias y difundir conocimiento aplicado sobre la gestión del riesgo a través de perspectivas interdisciplinarias; (3) potenciar el capital humano de estudiantes de la UOH y promover la investigación interdisciplinaria en la gestión del riesgo; y (3) crear y consolidar una entidad que visibilice el trabajo que realiza la UOH en torno a la gestión del riesgo, contribuyendo así a la reducción del riesgo de desastres a nivel regional y de la macrozona.
Territorios y Gobernanza del Riesgo: Fortaleciendo la Interdisciplina para prevenir Desastres Socio-naturales
Garoé Varas Becerril
https://www.mothersinscience.com/
Eruption periodicity study for obtaining the volcanic hazard map of El Hierro Island (Canary Islands)
buscar
Volcanism on the Nazca Plate: plumes and plate tectonic processes
buscar
12. SIMPROP (MODEM): Radiografiando sistemas magmáticos SIlícicos: el Magmatismo Permo-carbonífeRO del Pirineo Catalán
La conexión plutónico-volcánica se ha postulado principalmente en base a enfoques petrológicos, geoquímicos, geocronológicos, y geofísicos, y modelos teóricos, todos ellos proporcionando evidencia indirecta, aunque de momento se han ofrecido muy pocos ejemplos de campo de dicha conexión. La razón es que la mayoría de los terrenos volcánicos bien expuestos son demasiado jóvenes para que la erosión o la tectónica hayan exhumado sus raíces plutónicas más profundas, mientras que los terrenos plutónicos son demasiado viejos para preservar los posibles equivalentes volcánicos. El volcanismo del Pérmico Superior-Carbonífero-Inferior del Pirineo catalán ofrece una excepción a esta regla general, y expone varias rocas plutónicas, subvolcánicas y volcánicas contemporáneas y cogenéticas, ofreciendo así un buen ejemplo de campo de la existencia de dicha conexión plutónico-volcánica. La reconstrucción estratigráfica y estructural basada de este complejo plutónico-subvolcánico-volcánico, así como las nuevas edades radiométricas U-Th en circones, demuestran que hubo una relación tiempo-espacio entre todos ellos, ofreciendo así uno de las pocas evidencias directas de la existencia de la conexión plutónico-volcánica
Nature of the volcanism and structures of the outer-rise (Chile Central – Juan Fernández)
Nature of the volcanism and structures of the outer-rise (Chile Central – Juan Fernández) JFROR
Contribución a la gestión del riesgo por caída de rocas y erosión para el fomento de un geoturismo seguro a través de la geología aplicada en Rapa Nui.
Rapa Nui o Isla de Pascua es una isla volcánica intraoceánica que se encuentra sobre la placa de Nazca, ubicada en el vértice oriental de la Polinesia (Océano Pacífico). La isla se encuentra a 3700 km de la costa continental chilena y pertenece a la Región de Valparaíso (Chile). Su situación remota y aislada junto con el aumento de la urbanización, la ocupación y el turismo en el territorio, se traduce en mayores niveles de exposición y de vulnerabilidad frente a peligros geológicos como el volcanismo, la erosión, las remociones en masa, los tsunamis, entre otros, que generan niveles relativamente altos de riesgo local.
El 40% del área insular corresponde al Parque Nacional Rapa Nui, donde existen lugares de alto interés y visita por su riqueza arqueológica, como el volcán Rano Raraku, la cantera de los Moai y las cuevas volcánicas del sector Roiho. Sin embargo, actualmente estos lugares presentan riesgos de inestabilidad por caída de rocas que amenazan tanto a locales, visitantes y al propio patrimonio cultural. Además, los fenómenos hidrometeorológicos, cada vez más extremos como consecuencia del cambio climático actual, van agravando la condición de los materiales expuestos y aumentando la tasa de denudación en el territorio. La erosión, generada principalmente por la lluvia y el viento, es otro problema significativo, que afecta gravemente a los suelos de la isla, y que se ve principalmente en la incisión de la quebrada Ava Ranga Uka. A pesar de la importancia e implicancia que tienen estos fenómenos en la seguridad de quienes habitan y visitan Rapa Nui, no se han realizado estudios sobre la evaluación de los peligros geológicos asociados a las remociones en masa o la erosión superficial.
Este proyecto busca, por tanto, evaluar los procesos de denudación para comprender la influencia de los fenómenos de remociones en masa (caída de roca) y erosión por escorrentía superficial en la estabilidad del paisaje, que representan un riesgo geológico para en diferentes lugares altamente visitados. Para ello, se caracterizarán geotécnicamente los macizos rocosos con el objetivo de evaluar la estabilidad del paleoacantilado del cono Rano Raraku y las cuevas Ana Kakenga y Ana Te Pahu a través de ensayos de laboratorio, datos en terreno y el uso de un láser escáner. Además, se realizará la identificación de los factores que influyen en la inestabilidad y se localizaran las zonas de alcance ante el potencial peligro de caída de rocas a través del software RocScience. Por otro lado, para evaluar la erosión por escorrentía se determinarán las tasas de erosión superficial utilizando isótopos cosmogónicos (3He) de sedimentos de la quebrada Ava Ranga Uka. Los resultados, además de arrojar luz sobre la dinámica y evolución de los procesos de denudación en la isla, servirán para desarrollar planes de seguridad y conservación, asegurando la protección del patrimonio cultural y la seguridad de residentes y turistas.
"From source to surface: deciphering the spatio-temporal evolution of a distributed volcanic field"
Monogenetic volcanoes are the most common expression of magmatism on the Earths surface, and they are found in every tectonic setting, yet key aspects of the behavior and evolution of monogenetic volcanic systems remain poorly understood. Understanding the processes that govern the evolution of monogenetic volcanoes, and the timescales over which these processes operate, is critical for hazard assessment in active distributed volcanic fields.
The Southern Volcanic Zone (SVZ), one of the three volcanic regions of The Andes, displays a diverse landscape characterized by historically and potentially active volcanic structures, including ~60 large stratovolcanoes, three giant silicic caldera systems, and hundreds of small eruptive centers. Even these monogenetic volcanoes are considerably smaller in size and volume, they tend to be grouped in space and time, forming distributed volcanic fields, and provide information from source to surface processes that are usually obscured by the commonly dominant more evolved compositions in the Andean arc. Among the Holocene clustered small eruptive centers within the SVZ, this project focuses on the youngest distributed volcanic field in Chile, Carrán-Los Venados, which includes not only the most recent monogenetic eruption in Chile, which occurred in 1979, but it also hosts two other historical eruptions in 1907 and 1955.
The Carrán-Los Venados distributed volcanic field (CLV) has received limited attention, despite its
placement at position No. 9 in the specific risk ranking of active volcanoes in Chile compiled by
SERNAGEOMIN in 2020. Past research on the CLV has mostly focused on chronicling and observing the impacts of the historic eruptions. While some studies have touched upon the geochemical and tectonic aspects of the region, there remains a distinct absence of a comprehensive and cohesive examination of the entire volcanic field. Therefore, building upon previous research conducted in CLV, this project aims to tackle this knowledge gap, and we propose to carry out a detailed multi-disciplinary study (physical volcanology, petrology/geochemistry, and volcanic hazards). Primary research questions include: When did the volcanism start in CLV? What processes contribute to the formation of this volcanism, and what are the magmatic factors that influence its evolution? Where does the volcanic activity take place, and how does it
manifest on the surface? What should we expect in the next eruption? To answer these questions, we propose a methodology based on deposit characterization and mapping, geochronology, morphometry, rheology, petrography, mineral chemistry, geothermobarometry and hygrometry, and geochemical characterization and modelling. The integration of these diverse datasets will provide key constraints on the sources, processes, and timescales of magma ascent and storage leading to eruption of the CLV clustered small eruptive centers and small stratovolcanoes, providing an important framework for better understanding the behavior of distributed volcanic fields globally.
Furthermore, this project aims to provide valuable support to undergraduate and graduate students, who will have the unique opportunity to engage in all aspects of this research project, making it a significant component of their dissertation studies. Additionally, the study will foster ongoing international collaboration, creating avenues for future student and faculty exchanges. Moreover, it will facilitate outreach educational initiatives for the local community, including specialized seminars, thereby promoting knowledge dissemination and interactive learning experiences.
Itinerancia Audiovisual Interactivo Agua y Territorio
El producto Audiovisual Interactivo Agua y Territorio es un audiovisual generado con Realidad Aumentada, que puede ser utilizado en soporte oculus o directamente desde la web. En este audiovisual se presenta una maqueta de cuenca hidrográfica, donde el público podrá apropiarse de conocimiento científico asociado al ciclo del agua e interactuar con imágenes en el caso de la realidad aumentada. El contenido cuenta con una experiencia integrativa con la hidrología, abarcando los estados del agua, sus procesos físicos y recorridos desde la cordillera hasta su desembocadura con descripción auditiva del viento, precipitación, escorrentía, ríos y del agua. Esta experiencia se divide en 6 etapas; Estado Del Agua Cuenca General / El Agua y la Cuenca Alta / El Agua y la Cuenca Media /El Agua y la Cuenca Baja / Cuenca y Agua del Ser Humano / Tipos de Nubes.
La itinerancia de este producto se fundamenta en la importancia de tener conocimiento sobre los estados del agua y sus procesos, siendo la base para apropiar otros conceptos y prácticas que permitirán desarrollar acciones de mitigación contra la sequía y la desertificación. Como objetivo general se busca concientizar al público sobre los conceptos básicos del agua y sus usos, permitiendo levantar una alerta sobre la convivencia de la actividad humana y económica.
El producto está dirigido a un público de 7 a 18 años y sus familias, además de adultos interesadas/os.
Is Easter Island (Rapa Nui) still active? Following the traces of its recent volcanism
Ocean Island Volcanoes (OIVs) and seamounts are one of the most common, prominent and rapidly formed but least studied (from a geological/volcanological point of view) features on Earth. OIVs, which represent only the summit section of a much larger volcanic edifice rising up from the sea floor, are highly vulnerable to geological hazards such as volcanism, seismic activity, mass wasting (caldera formation), landslides and rockfalls, and tsunamis. Specifically, a volcanic eruption on an OIV can mainly have a substantial impact on the local population, infrastructure and economy. It is then essential understand the characteristic behaviour and the ages of the recent eruptions of the volcano to enhance the capacity to identify future geological hazard processes such as eruptions, tsunamis, etc. In other words, to forecast how a volcano will behave, it is essential to identify, map and analyse the deposits from past eruptions and determine the ages of those deposits. However, this becomes more challenging on Ocean Island Volcanoes that have not experienced recent eruptions, such as Easter Island (Chile), but which may still pose a significant risk of future eruption.
This proposal focuses on Easter Island (Rapa Nui or Isla de Pascua), an isolated southeast Pacific island with 7.750 inhabitants, that receives more than 100.000 tourists per year. This island has been catalogued as one of the 92 active volcanos of Chile by the Chilean mining and geological service, occupying the 46th position in its Volcanic Risk ranking. It was included taking into account the recent activity focused on Terevaka volcano and its peripheral vents and other factors as the population and infrastructures exposure and its high amount of visitors per year. Nevertheless, there is still a lack of robust geochronology and volcano-stratigraphy and morphometry for Easter Island, especially for these most recent eruptions. Therefore, a comprehensive study of its Holocene eruptions regarding their styles, a more accurate age determination, and a well identification of submarine volcanic centres around the island is still pending to evaluate its potential volcanic hazard.
The main aim of this project is to identify and study the most recent eruptions of Easter Island, both onshore and offshore. This will allow understanding how and when they took place in terms of volume, diverse morphometric parameters, styles and their ages which will verify if the island is still active. To identify and characterize the style of the most recent eruptions (Holocene- last 11.700 Kyr) on the island it is planned to conduct geomorphologic and morhometryc analyses of subaerial and submarine recent volcanic deposits with and integrated onshore/offshore approach. Also, volcano-stratigraphy for the most recent cones and associated deposits onshore, with special attention to those hydrovolcanic eruptions will be analysed. To determine the number of Holocene eruptions on the island, 14C (for charcoal), 40Ar/39Ar (for rocks) techniques will be used. Moreover, we will identify and date tephras of lacustrine sedimentary records of the Rano Raraku, Rano Kao lakes and the Rano Aroi peat bog related to recent eruptions.
A likely future eruption on the island or near its coasts would have negative and serious consequences; therefore, it is essential to undertake this scientific research aimed at improving the knowledge of the processes and their potential impacts. Furthermore, this study will also contribute to understanding the overall evolution of an interoceanic volcanic island whose results can be compared with other more studied OIVs in the world. In addition, this project will support undergraduate and graduate students, for whom this study will comprise most of their dissertation research, being an extraordinary opportunity for them. Moreover, this study will foster ongoing international collaboration, providing a pipeline for future student and faculty exchange, and will promote outreach educational experiences for the community, as well as more specialized seminars.