Arturo Merino Profesor Asistente

Arturo Merino
Grado Académico

Ph.D. in Mathematics, Technische Universität Berlin, Alemania.

Título(s) Profesional

Ingeniero Civil Matemático, Universidad de Chile.

Descripción

Arturo Merino es Ingeniero Civil Matemático de la Universidad de Chile y Doctor en Matemáticas de la Technische Universität Berlin en Alemania. Luego de graduarse, realizó un postdoctorado en la Universidad de Saarland y en el Instituto Max Planck de Informática. Actualmente, es profesor asistente en la Universidad de O’Higgins.

Su investigación se centra en el diseño y análisis de algoritmos y, en términos más generales, en matemáticas discretas. Sus principales áreas de interés incluyen los algoritmos de enumeración, la optimización bajo incertidumbre y los problemas algorítmicos con características geométricas o combinatoriales. En particular, Arturo ha trabajado investigando interacciones entre el diseño de algoritmos y la combinatoria, la optimización, la geometría discreta, la simetría y el álgebra.

22

1

  • REVISTA Proc. 35th International Symposium on Algorithms and Computation
  • 2024

Generating All Invertible Matrices by Row Operations


• Petr Gregor • Hung P. Hoang • Arturo Ignacio Merino Figueroa • Ondrej Micka

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2024.35

  • REVISTA Lecture Notes in Computer Science
  • 2024

On the Hardness of Gray Code Problems for Combinatorial Objects


• Arturo Ignacio Merino Figueroa • Namrata • Aaron Williams

http://dx.doi.org/10.1007/978-981-97-0566-5_9

  • REVISTA SIAM Journal on Computing
  • 2024

Traversing Combinatorial 0/1-Polytopes via Optimization


• Arturo Ignacio Merino Figueroa • Torsten Mütze

http://dx.doi.org/10.1137/23m1612019

  • REVISTA ACM Transactions on Algorithms
  • 2024

Combinatorial Generation via Permutation Languages. IV. Elimination Trees


• Jean Cardinal • Arturo Ignacio Merino Figueroa • Torsten Mütze

http://dx.doi.org/10.1145/3689633

  • REVISTA Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications
  • 2023

Kneser graphs are Hamiltonian


• Arturo Ignacio Merino Figueroa • Torsten Mütze • Namrata

http://dx.doi.org/10.5817/cz.muni.eurocomb23-101

  • REVISTA Journal of Graph Theory
  • 2023

Star transposition Gray codes for multiset permutations


• Petr Gregor • Arturo Ignacio Merino Figueroa • Torsten Mütze

http://dx.doi.org/10.1002/jgt.22915

  • REVISTA 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)
  • 2023

Traversing combinatorial 0/1-polytopes via optimization


• Arturo Ignacio Merino Figueroa • Torsten Mütze

http://dx.doi.org/10.1109/focs57990.2023.00076

  • REVISTA Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
  • 2023

Zigzagging through acyclic orientations of chordal graphs and hypergraphs


• Jean Cardinal • Hung P. Hoang • Arturo Ignacio Merino Figueroa • Torsten Mütze

http://dx.doi.org/10.1137/1.9781611977554.ch117

  • REVISTA SIAM Journal on Discrete Mathematics
  • 2023

Combinatorial Generation via Permutation Languages. V. Acyclic Orientations


• Jean Cardinal • Hung P. Hoang • Arturo Ignacio Merino Figueroa • Ond?ej Mi?ka • Torsten Mütze

http://dx.doi.org/10.1137/23m1546567

  • REVISTA Proceedings of the 55th Annual ACM Symposium on Theory of Computing
  • 2023

Kneser Graphs Are Hamiltonian


• Arturo Ignacio Merino Figueroa • Torsten Mütze • Namrata

http://dx.doi.org/10.1145/3564246.3585137

  • REVISTA Proc. 11th International Conference on Fun with Algorithms
  • 2022

All Your Base(s) Are Belong to Us: Listing All Bases of a Matroid by Greedy Exchanges


• Arturo Ignacio Merino Figueroa • Torsten Mütze • Aaron Williams

http://dx.doi.org/10.4230/LIPIcs.FUN.2022.22

  • REVISTA Proc. 47th Mathematical Foundations of Computer Science
  • 2022

The Hamilton Compression of Highly Symmetric Graphs


• Petr Gregor • Arturo Ignacio Merino Figueroa • Torsten Mütze

http://dx.doi.org/10.4230/LIPIcs.MFCS.2022.54

  • REVISTA Proc. 39th Symposium on Theoretical Aspects of Computer Science
  • 2022

Star Transposition Gray Codes for Multiset Permutations


• Petr Gregor • Arturo Ignacio Merino Figueroa • Torsten Mütze

http://dx.doi.org/10.4230/LIPIcs.STACS.2022.34

  • REVISTA Discrete & Computational Geometry
  • 2022

Combinatorial Generation via Permutation Languages. III. Rectangulations


• Arturo Ignacio Merino Figueroa • Torsten Mütze

http://dx.doi.org/10.1007/s00454-022-00393-w

  • REVISTA Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
  • 2022

Efficient generation of elimination trees and graph associahedra


• Jean Cardinal • Arturo Ignacio Merino Figueroa • Torsten Mütze

http://dx.doi.org/10.1137/1.9781611977073.84

  • REVISTA SIAM Journal on Computing
  • 2022

On a Combinatorial Generation Problem of Knuth


• Arturo Ignacio Merino Figueroa • Ond?ej Mi?ka • Torsten Mütze

http://dx.doi.org/10.1137/20m1377394

  • REVISTA Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA)
  • 2021

On a combinatorial generation problem of Knuth


• Arturo Ignacio Merino Figueroa • Ond?ej Mi?ka • Torsten Mütze

http://dx.doi.org/10.1137/1.9781611976465.46

  • REVISTA Proc. 37th Symposium on Computational Geometry
  • 2021

Efficient Generation of Rectangulations via Permutation Languages


• Arturo Ignacio Merino Figueroa • Torsten Mütze

http://dx.doi.org/10.4230/LIPIcs.SoCG.2021.54

  • REVISTA Proc. 47th International Colloquium on Automata, Languages, and Programming
  • 2020

On the Two-Dimensional Knapsack Problem for Convex Polygons


• Arturo Ignacio Merino Figueroa • Andreas Wiese

http://dx.doi.org/10.4230/LIPIcs.ICALP.2020.84

  • REVISTA Proc. 46th International Colloquium on Automata, Languages, and Programming
  • 2019

The Minimum Cost Query Problem on Matroids with Uncertainty Areas


• Arturo Ignacio Merino Figueroa • José A. Soto

http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.83

  • 11251528
  • Abril 2025 - Marzo 2028
AdjudicadoAgencia Nacional de Investigación y Desarrollo - ANID

Combinatorial objects frequently appear in various areas of computer science and discrete mathematics. These objects are central to questions in algorithmic design, where we aim to program a computer to efficiently perform tasks involving them. These tasks may include counting objects based on certain parameters, sampling an object uniformly at random, optimizing with respect to an objective function, searching for objects that satisfy specific properties, or generating all objects exactly once. This project focuses on two of these problems: combinatorial generation and the search for highly distinct combinatorial objects. While many of the aforementioned tasks have general-purpose techniques that allow them to tackle multiple problems simultaneously, the situation becomes less clear when dealing with combinatorial generation or the search for distant objects. Much of the effort in these areas has been devoted to developing ad hoc methods. Despite this, these last two problems can be naturally phrased in the language of flip graphs, which encode the similarity between combinatorial objects. In this context, the problem transforms into the traditional graph problems of Hamiltonicity (finding a path that traverses all the vertices exactly once) and diameter (finding two vertices that are farthest apart). Recent research has highlighted the significant value of exploiting polytopal properties and symmetry of flip graphs, leading to unified frameworks that can address many problems simultaneously. The main objective of this project is to contribute to this perspective. Specifically, it aims to enhance our understanding of the polytopal and symmetric properties of flip graphs and use this knowledge to develop efficient algorithms for tackling Hamiltonicity and diameter problems
Co-Investigador/a