12
Manuel Martínez Gómez ● Profesor Asistente

Grado Académico
PhD in Electrical and Electronic Engineer, University of Nottingham.
Título(s) Profesional
Ingeniero Civil Eléctrico, Universidad de Magallanes.
Descripción
Manuel se graduó el año 2015 de Ingeniería Civil Eléctrica en la Universidad de Magallanes. En 2024, obtuvo su PhD en Ingeniería Eléctrica con la Universidad de Chile en cotutela con la Universidad de Nottingham, Inglaterra. Actualmente, se desempeña como investigador postdoctoral en el Instituto de Ciencias de la Ingeniería de la Universidad de O’Higgins. Sus áreas de interés de investigación son el control distribuido multi-agente, control robusto y control por aprendizaje reforzado, con aplicaciones a micro-redes eléctricas y sensores distribuidos.
1
- REVISTA IEEE Open Journal of the Industrial Electronics Society
- 2025
Distributed Control Scheme for the Coordination of Interlinking Converters in Islanded Hybrid AC/DC Multi-Microgrids
• Manuel Martínez Gómez • Marcos E. Orchard • Serhy Bozhko • Patrick Wheeler • Claudio Burgos Mellado
- REVISTA IEEE Journal of Emerging and Selected Topics in Industrial Electronics
- 2024
Distributed Event-Triggered Consensus Control for Modular Multilevel Converters
• Manuel Martínez Gómez
- REVISTA IEEE Transactions on Smart Grid
- 2023
Dynamic Average Consensus With Anti-Windup Applied to Interlinking Converters in AC/DC Microgrids Under Economic Dispatch and Delays
• Manuel Martínez Gómez • Marcos E. Orchard • Serhiy Bozhko
- REVISTA Sustainability
- 2023
Distributed Control Scheme for Clusters of Power Quality Compensators in Grid-Tied AC Microgrids
• Manuel Martínez Gómez • Claudio Burgos Mellado • Helmo Kelis Morales-Paredes • Juan Sebastián Gómez • Anant Kumar Verma
- REVISTA IEEE Access
- 2021
Multi-Objective Finite-Time Control for the Interlinking Converter on Hybrid AC/DC Microgrids
• Manuel Martínez Gómez • Alex Navas • Marcos E. Orchard • Serhiy Bozhko • Claudio Burgos Mellado
- REVISTA 2021 6th IEEE Workshop on the Electronic Grid (eGRID)
- 2021
Consensus-Based Distributed Control for Improving the Sharing of Unbalanced Currents in Three-phase Three-wire Isolated Microgrids
• Claudio Burgos Mellado • Felipe Donoso • Jacqueline Llanos • Manuel Martínez Gómez • Helmo K. Morales-Paredes
- REVISTA IEEE Access
- 2020
Distributed Control Strategies for Microgrids: An Overview
• Enrique Espina • Jacqueline Llanos • Claudio Burgos Mellado • Roberto Cardenas-Dobson • Manuel Martínez Gómez
- REVISTA 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL)
- 2020
Distributed Control for a Cost-based Droop-free Microgrid
• Manuel Martínez Gómez • Claudio Burgos Mellado • Roberto Cardenas Dobson
- REVISTA IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society
- 2020
Finite-Time Second-Order Cooperative Control for the Economic Dispatch in DC Microgrids
• Manuel Martínez Gómez • Roberto Cardenas Dobson
- REVISTA IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society
- 2020
A Multi-Objective Distributed Finite-Time Optimal Dispatch of Hybrid Microgrids
• Manuel Martínez Gómez • Roberto Cardenas Dobson • Alex Navas Fonseca • Erwin Rute Luengo
- REVISTA 2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe)
- 2020
Experimental Hybrid AC/DC-Microgrid Prototype for Laboratory Research
• Enrique Espina • Claudio Burgos Mellado • Juan S. Gomez • Jacqueline Llanos • Erwin Rute
http://dx.doi.org/10.23919/epe20ecceeurope43536.2020.9215751
- REVISTA 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA)
- 2018
Alternate Arm Converter with Thyristor-based Director Switches
• Diego Soto-Sanchez • Manuel Martínez Gómez • Ivan Andrade • Ruben Pena
- 11261116
- Abril 2026 - Marzo 2029
AdjudicadoAgencia Nacional de Investigación y Desarrollo - ANID
Cooperative control of intelligent agents using reinforcement learning to support the implementation of AC/DC multi-microgrids in the energy industry, from regions in Chile to the rest of the world.
[vc_section el_class="container mx-auto align-items-center circle--pattern" css=".vc_custom_1648956589196{padding-top: 3rem !important;}"][vc_row el_class="pb-5"][vc_column][vc_wp_custommenu nav_menu="6"][uoh_breadcrumb_component automatic_breadcrumb="true"][uoh_title_component title_dropdown="big" title_decorator="true"]{{title}}[/uoh_title_component][vc_column_text css=""]This project will address the implementation of distributed controllers in intelligent agents within AC/DC electrical microgrids. Specifically, this project will address open issues in the distributed control literature for microgrids; these include optimal
parameter tuning and resilience to communications disturbances such as transport delays, packet loss, and communication failures due to cyberattacks. All of these are important components that prevent the proliferation of microgrid projects throughout the country and the world. Microgrids have the potential to improve the energy management of renewable resources and the resilience of current and future electrical systems. Furthermore, they aid in decarbonization and benefit the energization of isolated communities and national industries. Based on the above, the main objective of this research is to formulate, implement, and validate distributed intelligent controllers, using reinforcement learning, in agents that comprise interconnected AC/DC microgrids, in order to achieve optimal operation concerning available energy resources despite disturbances and failures in communication channels. To achieve this objective, the following specific objectives are specified: (i) investigate the state of the art in the use of reinforcement learning algorithms in cooperative multi-agent system control and their application to microgrids; (ii) design a deep reinforcement learning algorithm to auxiliary control an ILC of a hybrid AC/DC microgrid with communication loss and variable time delays; (iii) design a distributed controller with parameter and structure adjustment capability through deep reinforcement learning algorithms for the agents of an AC/DC multi-microgrid with communication losses and variable time delay; (iv) design a robust distributed controller through deep reinforcement learning algorithms that allows agents in an AC/DC multi-microgrid to be resilient to heterogeneous and variable transport delays, loss of data packets, and DoS cyber-attacks; (v) build a prototyping platform for multi-agent-based intelligent agent control schemes with digital twin co-simulation; (vi) implement and validate the proposed reinforcement learning controllers in an AC/DC multi-microgrid experimental setup.[/vc_column_text][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649209804184{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5"][vc_row el_class="container mx-auto align-items-center p-md-0 pt-5"][vc_column el_class="p-0"][/vc_column][/vc_row][/vc_section][vc_section css=".vc_custom_1649210787516{background-color: #f6faff !important;}" el_class="p-md-0 pt-md-5 pb-md-5"][vc_row el_class="container mx-auto align-items-center"][vc_column][/vc_column][/vc_row][/vc_section]
Investigador/a Responsable
Mail de contacto