David Sossa Profesor Asistente

    Grado Académico

    Doctor en Ciencias de la Ingeniería con mención en Modelación Matemática.

    Título(s) Profesional

    Matemático

    Descripción

    David Sossa obtuvo su Licenciatura en Matemática en la Universidad Mayor de San Simón, Bolivia. En 2014 recibió los grados de Doctor en Ciencias de la Ingeniería con mención en Modelación Matemática, Universidad de Chile, y Doctor en Matemática Aplicada, Universidad de Avignon, Francia. Posteriormente, realizó un postdoctorado en la Universidad Técnica Federico Santa María y desde el 2017 es Profesor Asistente en la Universidad de O’Higgins. Los trabajos de David se desenvuelven principalmente en el área de Optimización en donde ha hecho aportes en tópicos como álgebras de Jordan para optimización, programación cónica, desigualdades variacionales y problemas de complementariedad, autovalores complementarios de grafos.

    David, integra el área del Instituto de Matemáticas y Aplicaciones

    17

    4

    • REVISTA Discrete Mathematics
    • 2024

    Graphs sharing an arbitrary number of ordered complementarity eigenvalues


    • David Sossa Aguirre • Vilmar Trevisan •

    http://dx.doi.org/10.1016/j.disc.2023.113788

    • REVISTA Linear Algebra and its Applications
    • 2023

    A Fiedler-type determinantal inequality in Euclidean Jordan algebras


    • David Sossa Aguirre •

    http://dx.doi.org/10.1016/j.laa.2023.03.011

    • REVISTA Positivity
    • 2023

    Singular value problems under nonnegativity constraints


    • David Sossa Aguirre •

    http://dx.doi.org/10.1007/s11117-023-01000-9

    • REVISTA Set-Valued and Variational Analysis
    • 2023

    Singular Value Analysis of Linear Maps Under Conic Constraints


    • David Sossa Aguirre •

    http://dx.doi.org/10.1007/s11228-023-00696-x

    • REVISTA AUSTRALASIAN JOURNAL OF COMBINATORICS
    • 2023

    Infinite families of connected graphs with equal spectral radius


    • David Sossa Aguirre •
    • REVISTA AUSTRALASIAN JOURNAL OF COMBINATORICS

    Complementarity eigenvalues as tools for determining connected graphs


    • Alberto Seeger • David Sossa Aguirre •

    http://dx.doi.org/https://ajc.maths.uq.edu.au/pdf/84/ajc_v84_p220.pdf

    • REVISTA Graphs and Combinatorics

    Measuring similarity between connected graphs: the role of induced subgraphs and complementarity eigenvalues


    • Alberto Seeger • David Sossa Aguirre •

    http://dx.doi.org/10.1007/s00373-020-02260-y

    • REVISTA Linear and Multilinear Algebra

    Vertex-removal, vertex-addition, and different notions of similarity for vertices of a graph


    • Alberto Seeger • David Sossa Aguirre •

    http://dx.doi.org/10.1080/03081087.2021.1908943

    • REVISTA Linear and Multilinear Algebra

    Spectral radii of friendship graphs and their connected induced subgraphs


    • Alberto Seeger • David Sossa Aguirre •

    http://dx.doi.org/10.1080/03081087.2021.2017836

    • REVISTA Graphs and Combinatorics

    Extremal Problems Involving the Two Largest Complementarity Eigenvalues of a Graph


    • Alberto Seeger • David Sossa Aguirre •

    http://dx.doi.org/10.1007/s00373-019-02112-4

    • REVISTA Linear Algebra and its Applications

    On cardinality of complementarity spectra of connected graphs


    • Alberto Seeger • David Sossa Aguirre •

    http://dx.doi.org/10.1016/j.laa.2019.11.012

    • REVISTA Mathematical Programming

    Weakly homogeneous variational inequalities and solvability of nonlinear equations over cones


    • M. Seetharama Gowda • David Sossa Aguirre •

    http://dx.doi.org/10.1007/s10107-018-1263-7

    • REVISTA Journal of Optimization Theory and Applications

    On the Central Paths in Symmetric Cone Programming


    • Héctor Ramírez Cabrera • David Sossa Aguirre •

    http://dx.doi.org/10.1007/s10957-016-0989-8

    • REVISTA TOP

    Critical angles between two convex cones I. General theory


    • Alberto Seeger • David Sossa Aguirre •

    http://dx.doi.org/10.1007/s11750-015-0375-y

    • REVISTA TOP

    Critical angles between two convex cones II. Special cases


    • Alberto Seeger • David Sossa Aguirre •

    http://dx.doi.org/10.1007/s11750-015-0382-z

    • REVISTA Journal of Global Optimization

    Complementarity problems with respect to Loewnerian cones


    • Alberto Seeger • David Sossa Aguirre •

    http://dx.doi.org/10.1007/s10898-014-0230-y

    • REVISTA SIAM Journal on Optimization

    Commutation Principle for Variational Problems on Euclidean Jordan Algebras


    • Héctor Ramírez Cabrera • Alberto Seeger • David Sossa Aguirre •

    http://dx.doi.org/10.1137/120879397

    • Enero 2024
    • - Enero 2025
    Proyecto Adjudicado

    The research project "Matrices, Optimization, and Randomness with Applications in Data Science (MORA-DataS)" is composed of research teams from Bolivia, Chile, France, and Peru. This project is funded by the regional program MATH-Amsud in cooperation with UMSA (Bolivia), ANID, CMM (Chile), MEAE (France), and CONCYTEC (Peru). The aim of this project is to study diverse optimization models, deterministic and stochastic, and to investigate various problems in matrix analysis with potential applications in data science. Some of the research topics are computing angles between convex cones, inverse eigenvalue problems, proximal algorithms for symmetric cone optimization, nonlinear second-order cone programming problems, nonsmooth joint chance constrained optimization problems, and Euclidean Jordan algebras for optimization.
    Co-Investigador/aInvestigador/a Responsable
    • Abril 2020
    Proyecto En Ejecución

    The field of remote sensing is experiencing an unprecedented acceleration. Besides the large public programs such as Sentinel (see e.g. https://sentinel.esa.int/web/sentinel/missions/sentinel-2), private actors are creating fleets of micro-satellites capable of monitoring of the earth with daily revisits. This abundant and cheap data is creating opportunities for developing novel applications for the monitoring of industrial and agricultural activity. The automatic exploitation of this data is bound to specific application domain knowledge, which requires a mastery of advanced techniques such as computer vision and machine learning, as well as expert knowledge in the field of agriculture. To do this, the team must master earth observation satellites, be able to define the adequate mathematical detection theories, and build on a deep knowledge of satellite image processing, while also including expert knowledge in agriculture. This project aims at uniting competences across the fields of computer vision and machine learning, remote sensing to address emerging applications in agronomy. This project will in addition foster the creation of reproducible research by adopting a reproducible research methodology thus contributing the resulting algorithms to the journal Image Processing On-Line (IPOL). The IPOL journal is an initiative to establish a clear and reproducible state-of-the-art in the domain of image processing and computer vision.
    Co-Investigador/a
    • Noviembre 2014
    Proyecto Ejecutado

    Co-Investigador/aCo-Investigador/a
    • Agosto 2013
    Proyecto En Ejecución

    The project deals with commutation principles in Euclidean Jordan Algebras, Normal Decomposition systems and Fan-Theobald-von Newman systems. It propose to deal with the generalization of these principles and the application to variational analysis and the Marcus-de Oliveira determinantal conjecture.
    Responsable AlternoInvestigador/a Responsable