Vicente Salinas Barrera Profesor Asistente

Vicente Salinas Barrera
Grado Académico

Doctor en Ciencias mención Física, Universidad de Santiago

Título(s) Profesional

Ingeniero Físico, Universidad de Santiago

Descripción

Doctor en Física por la Universidad de Santiago de Chile (USACH), donde también obtuvo los títulos de Ingeniero en Física y Licenciado en Física Aplicada. Hasta el año el 2024, se desempeñó como Académico Investigador en la Universidad Autónoma de Chile, donde dirigió el Grupo de Investigación Aplicada en Robótica e Industria 4.0.

Su investigación abarca áreas de la ciencia de materiales, la ingeniería y la tecnología, incluyendo el estudio de propiedades mecánicas y aplicaciones de aleaciones avanzadas, así como el uso de ultrasonido para monitorear deformaciones y plasticidad en metales. Ha contribuido a la caracterización del comportamiento mecánico de materiales como aleaciones de titanio y aceros de alta resistencia, además de explorar técnicas ultrasónicas para entender el comportamiento de dislocaciones en metales.

Asimismo, trabaja en cavitación acústica como método para la generación de péptidos a partir de residuos de la industria salmonera, contribuyendo al desarrollo sostenible mediante la valorización de subproductos industriales.

Se ha destacado por su compromiso con la comunicación científica y las iniciativas de ciencia abierta, desempeñando un papel activo en proyectos como InES Ciencia Abierta, que buscan acercar la investigación científica a la comunidad. Su trayectoria integra tanto la investigación teórica como aplicaciones prácticas, impulsando la innovación interdisciplinaria en ingeniería y salud, por medio de iniciativas educativas basadas en proyectos y tecnología aplicada.

-1

  • REVISTA Materials Letters
  • 2024

Highly porous CP-Ti foams manufactured with powder compaction, the space holder method and plasma-assisted sintering for biomedical applications


• Vicente Reinaldo Salinas Barrera

http://dx.doi.org/10.1016/j.matlet.2024.136091

  • REVISTA Biosensors
  • 2024

Ultrasonic Sensor: A Fast and Non-Destructive System to Measure the Viscosity and Density of Molecular Fluids


• Vicente Reinaldo Salinas Barrera

http://dx.doi.org/10.3390/bios14070346

  • REVISTA Materials
  • 2024

Acoustic Assessment of Microstructural Deformation Mechanisms on a Cold Rolled Cu30Zn Brass


• Vicente Reinaldo Salinas Barrera

http://dx.doi.org/10.3390/ma17133321

  • REVISTA Metals
  • 2024

Synthesis and Characterization of Ti-13Ta-6Sn Foams Produced Using Mechanical Alloying, the Space Holder Method and Plasma-Assisted Sintering


• Vicente Reinaldo Salinas Barrera

http://dx.doi.org/10.3390/met14101145

  • REVISTA Materials Science and Engineering: A
  • 2023

Nonlinear acoustic characterization of heterogeneous plasticity in bent aluminium samples


• Carolina Espinoza • Vicente Reinaldo Salinas Barrera • Makarena Osorio • Edgar Pio López • Aguilar

http://dx.doi.org/10.1016/j.msea.2023.144759

  • REVISTA Physical Review E
  • 2023

Stability of a tilted granular monolayer: How many spheres can we pick before the collapse?


• Eduardo Rojas Parra • Héctor Alarcón • Vicente Reinaldo Salinas Barrera • Gustavo Castillo Bautista • Pablo Gutierrez Matus

http://dx.doi.org/10.1103/PhysRevE.108.064904

  • REVISTA Physical Review Letters
  • 2023

Swirling fluid reduces the bounce of partially filled containers


• Klebbert Andrade • Javiera Catalán • Juan Marín • Vicente Reinaldo Salinas Barrera • Gustavo Castillo Bautista

http://dx.doi.org/10.1103/PhysRevLett.130.244001

  • REVISTA Journal of Materials Research and Technology
  • 2023

Improving mechanical properties and antibacterial response of ?/? ternary Ti-Ta alloy foams for biomedical uses


• Vicente Reinaldo Salinas Barrera

http://dx.doi.org/10.1016/j.jmrt.2023.05.115

  • REVISTA Materials Science and Engineering: A
  • 2022

In-situ monitoring of dislocation proliferation during plastic deformation of 304L steel using ultrasound


• Vicente Reinaldo Salinas Barrera

http://dx.doi.org/10.1016/j.msea.2022.143416

  • REVISTA Scientific Reports
  • 2021

Triggering avalanches by transverse perturbationsin a rotating drum


• Vicente Reinaldo Salinas Barrera • Cristóbal Sebastián Quiñinao Montero • Sebastián González • Gustavo Castillo Bautista

http://dx.doi.org/10.1038/s41598-021-93422-2

  • REVISTA Materials & Design
  • 2020

Improving the mechanical strength of ternary beta titanium alloy (Ti-Ta-Sn) foams, using a bimodal microstructure


• Vicente Reinaldo Salinas Barrera

http://dx.doi.org/10.1016/J.MATDES.2020.108945

  • REVISTA Materials Science and Engineering: C
  • 2020

Effect of added porosity on a novel porous Ti-Nb-Ta-Fe-Mn alloy exposed to simulated body fluid


• Vicente Reinaldo Salinas Barrera

http://dx.doi.org/10.1016/J.MSEC.2020.110758

  • REVISTA Metals
  • 2019

Influence of Porosity on the Elastic Modulus of Ti-Zr-Ta-Nb Foams with a Low Nb Content


• Vicente Reinaldo Salinas Barrera

http://dx.doi.org/10.3390/met9020176

  • REVISTA Materials
  • 2018

Linear Versus Nonlinear Acoustic Probing of Plasticity in Metals: A Quantitative Assessment


• Vicente Reinaldo Salinas Barrera

http://dx.doi.org/10.3390/ma11112217

  • REVISTA International Journal of Plasticity
  • 2017

In situ monitoring of dislocation proliferation during plastic deformation using ultrasound


• Vicente Reinaldo Salinas Barrera

http://dx.doi.org/10.1016/j.ijplas.2017.06.001

  • REVISTA Ultrasonics Sonochemistry
  • 2014

Influence of the liquid viscosity on the formation of bubble structures in a 20 kHz field


• Vicente Reinaldo Salinas Barrera

http://dx.doi.org/10.1016/j.ultsonch.2014.07.007

  • 1241649
  • Abril 2024 - Abril 2026
En EjecuciónAgencia Nacional de Investigación y Desarrollo - ANID

This project aims to investigate how structural modifications of a dicationic derivative of azobenzene can affect the drug release and load capacity of its photoactive molecular aggregate. To evaluate this, three types of structural modifications are proposed. First, the introduction of functional groups on the photoactive nucleus of dicationic azobenzene is expected to shift the absorption band of the molecular photoswitch. Second, the replacement of the fluorescent organic cations over the structure of the molecular photoswitch, which confer luminescent and amphipathic properties to the system. And third, the modification of the length of the chains over the molecular photoswitch could change the aggregate size. To determine whether these potential modifications can modulate the light-induced release activity of the photoswitchable aggregate, an enzyme inhibitor will be loaded and released by illumination in the presence of the enzyme. Under this scenario, any modification of the enzymatic activity will be correlated with the drug's photorelease.
Co-Investigador/a
  • 1230938
  • Abril 2023 - Abril 2026
En EjecuciónAgencia Nacional de Investigación y Desarrollo - ANID

It is proposed to assess the feasibility of using ultrasound as a nonintrusive, in-situ, probe of plastic behavior in high-entropy alloys (HEAs). More specifically, whether it is possible to use ultrasound to reliably characterize the plasticity deformation mechanism---slip, TWIP, TRIP---of Fe80-xCo10Cr10Mnx. To this end, the speed of sound will be measured, continuously, as a function of applied stress in uniaxial tensile tests. In previous work, proposers have shown that the speed of sound as a function of stress provides a reliable tool to measure dislocation density in aluminum, copper, and stainless steel. In the latter case, it has also been shown to reliably discriminate between slip and twinning as a deformation mechanism. It is now proposed to study the possibility of extending this capability not only to new materials, HEAs, but also to a new mechanism, phase transformation. We will start with the materials whose plastic deformation is slip-dominated, since we have robust experience in this case. We shall then move to the TWIP material, where our more recent experience will be brought to bear, to end up with the unexplored, from the point of view of ultrasound, TRIP material. Samples for tensile loading will be prepared. They will be tested using a universal testing machine and ultrasound measurements of longitudinal wave velocity will be carried out in-situ. A decrease in the wave velocity as a function of applied stress will indicate a proliferation of dislocations; the dislocation density will be determined as a function of stress as will the parameters of Taylor's rule. An increase in wave velocity as a function of stress will indicate a decrease in average grain size. Modeling will be applied to determine whether this is due to twinning or phase transformation. These results will also be validated with post-mortem XRD, TEM, and metallography measurements, as well as ex-situ acoustic measurements. The success of the proposed research would have short-term and long-term benefits: In the short term it would provide a non-intrusive tool---ultrasound---to assist in the search for HEAs with pre-determined properties, as needed for specific applications. In the long-term, it would pave the way for the development of a practical, non-intrusive, tool for the evaluation of HEA pieces in service.
Co-Investigador/a
  • 1220058
  • Abril 2022 - Abril 2026
FinalizadoAgencia Nacional de Investigación y Desarrollo - ANID

Society is facing an unprecedented challenge in terms of combining sustainability, economic growth and technological development. The industry has tackled these demands by developing novel products and innovative service strategies, taking the maximum advantage of the installed capabilities and cutting edge technologies. Steel industry has taken the lead by supporting internal research and scientific collaborations worldwide, enabling an ever increasing number of scientific developments. Steel plays a major role as the backbone material of civilization for a number of reasons, namely (i) abundance, (ii) relatively cheap, (iii) wide range of properties and applications, (iv) 100% recyclable, (v) potential to improve in-service performance. In the framework of (v), the current proposal aims to provide new grades of steel by means of chemical patterning of austenite. The concept of austenite patterning consists in producing layers in the microstructure with a chemical composition different from the bulk composition, via specific alloying elements and thermal cycles. These layers, after fully austenitization, deliver transformation products on cooling different than expected from the average austenite, allowing a new degree of freedom for tailoring of microstructures. So far there is only one scientific paper on the subject, which has reported outstanding mechanical strength (ultimate) of ca. 2 GPa, with uniform elongations of 7% in a lamellar martensite-austenite microstructure in a single 0.51C-4.35Mn steel. The present proposal sets a detailed working plan to investigate the impact of the initial microstructure and thermal path upon the chemical patterning of austenite in a number of different steel chemistries. The aim is two-folded: to analize the evolution of the phase transformations at different stages of the process as a function of the initial microstructure and heat-treatment parameters, and to gain fundamental insights on the mechanical behavior of the new steel grades. It is hypothesized that the correct interplay of the parameters mentioned above can yield optimized final microstructures with enhanced in-service performance.The methodology incorporates up-to-date assessment tools of thermodynamic equilibria and kinetics (ThermoCalc & Dictra) in selected steel chemistries, accurate tracking of phase transformations via Dilatometry experiments, in-depth characterization of the microstructure and mechanical properties and insitu/ex-situ ultrasound probing of tensile test specimens to better understand the hardening mechanisms. The experimental results will be compared with modeling strategies for both phase transformations and mechanical behavior. The expected results of the proposal will be of interest to the scientific community due to the novelty of the experimental concept and the potential contribution to the understanding of structure-property relations. Else, the findings will be of significance for the design of structural parts, such as high strength and impact toughness for car body crash worthiness. In the case of Chilean mining industry, wear and impact wear resistance are potential applications of the new steel grades to be tested. The proposal is lay out within a novel cooperation framework between a group of specialists on specific aspects of materials science (phase transformations in steel, constitutive modeling, ultrasound probing), oriented to contribute to the fundamental understanding of the microstructure-property relations resulting from chemical patterning of austenite. Additionally, three universities and one industrial partner (University of Twente, The Nederland, Gent University, Belgium; University of Alberta, Canada; and ME Elecmetal, Chile-US, respectively) are supporting the proposal with resources such as workshops, sample preparation, specific characterization techniques, software for post-processing, among others.
Co-Investigador/a
  • Chile - Santiago

El efecto Moiré II

ISBN
978-956-346-192-3
N° de Páginas
200
Idioma
Español
Editorial
Abeledo Perrot Thomson Reuters
Editores
Sologuren, Enrique y Núñez, Carmen Gloria
Autores
Vicente Reinaldo Salinas BarreraAlejandra Mizala, Catalina Canals, Lorena Ortega
  • Chile - Santiago

Con las manos en la ciencia II

ISBN
978-956-346-192-3
N° de Páginas
200
Idioma
Español
Editorial
Abeledo Perrot Thomson Reuters
Editores
Sologuren, Enrique y Núñez, Carmen Gloria
Autores
Vicente Reinaldo Salinas BarreraAlejandra Mizala, Catalina Canals, Lorena Ortega
  • Chile - Santiago

Coronavirus. El planeta se defiende

ISBN
97895661092801132021ED1
N° de Páginas
200
Idioma
Español
Editorial
Abeledo Perrot Thomson Reuters
Editores
Sologuren, Enrique y Núñez, Carmen Gloria
Autores
Vicente Reinaldo Salinas BarreraAlejandra Mizala, Catalina Canals, Lorena Ortega