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This volume contains the papers presented at the 35th International Workshop on Unifi-
cation (UNIF 2021). UNIF 2021 was affiliated with the 6th International Conference on
Formal Structures for Computation and Deduction (FSCD 2021) and held on July 18,
2021 in Buenos Aires, Argentina (online due to the COVID-19 pandemic).

Unification is concerned with the problem of identifying given (first- or higher-order)
terms, either syntactically or modulo a theory. It is a fundamental technique that is
employed in various areas of Computer Science and Mathematics. In particular, unification
algorithms are key components in completion of term rewriting systems, resolution-based
theorem proving, and logic programming. But unification is, for example, also investigated
in the context of natural language processing, program analysis, types, modal logics, and
in knowledge representation. UNIF is a well-established yearly event. Its purpose is to
bring together researchers interested in unification theory and its applications, as well as
closely related topics, such as matching (i.e., one-sided unification), anti-unification (i.e.,
the dual problem to unification), disunification (i.e., solving equations and inequations)
and the admissibility problem (which generalizes unification in modal logics). The UNIF
workshop series provides a forum for presenting recent (even unfinished) work, and discuss
new ideas and trends in this and related fields.

The Program Committee of UNIF 2021 selected 9 contributions for presentation. Each
submission was evaluated by at least three reviewers. We would like to thank all members
of the Program Committee and the Organizers of FSCD for their support in the prepara-
tion of the UNIF 2021 workshop. The EasyChair system, designed by Andrei Voronkov,
was a great help for organizing the reviewing process.
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About the unification type of
modal logic K5 and its extensions∗

Majid Alizadeh1, Mohammad Ardeshir2, Philippe Balbiani3, and Mojtaba Mojtahedi1

1 School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
2 Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran

3 Toulouse Institute of Computer Science Research, CNRS — Toulouse University, Toulouse, France

1 Introduction
We prove that all extensions of K45 have projective unification and K5 and some of its extensions are
of unification type 1. The breakdown of the paper is as follows. Firstly, we prove in Proposition 9 that
if L contains K45 then every formula has extension property in L. Secondly, generalizing some results
obtained in [7], we prove in Proposition 13 that if L contains K5 then every L-unifiable formula is L-
filtering. Thirdly, imitating arguments used in [19, 20], we prove in Proposition 20 that if L contains K5
then every formula having extension property in L is L-projective. Fourthly, we prove in Proposition 21
that if L contains K5 and L is global1 then for all substitutions σ, every formula L-unified by σ is
implied by an L-projective formula based on the variables of the given formula and having σ as one of
its L-unifiers. The proofs of some of our results can be found in [1].

2 Syntax and semantics
Let VAR be a countably infinite set of variables (with typical members denoted x, y, etc). The set
FOR of all formulas (with typical members denoted ϕ, ψ, etc) is inductively defined by

• ϕ := x | ⊥ | ¬ϕ | (ϕ ∨ ϕ) | �ϕ.

We adopt the standard rules for omission of parentheses. The Boolean connectives >, ∧,→ and↔ and
the modal connective ♦ are defined as usual. For all ϕ∈FOR, let var(ϕ) be the set of all variables
occurring in ϕ. For all finite X⊆VAR, let FORX be the set of all ϕ∈FOR such that var(ϕ)⊆X .

A substitution is a triple (X,Y, σ) where X,Y⊆VAR are finite and σ : FORX −→ FORY is
a homomorphism. The sets X and Y are respectively its domain and its codomain. Let SUB be the
set of all substitutions. We say that (X,Y, σ)∈SUB is variable-free if Y=∅. It is possible to compose
two substitutions if the codomain of the first is equal to the domain of the second. The composition
of (X,Y, σ), (Y,Z, τ)∈SUB (in symbols (X,Y, σ) ◦ (Y,Z, τ)) is the substitution (X,Z, υ) such that
for all x∈X , υ(x)=τ(σ(x)). When its domain and its codomain can be guessed from the context, the
substitution (X,Y, σ) will be simply written σ2. For all finite X,Y⊆VAR, let SUBX,Y be the set of
all σ∈SUB such that the domain of σ is X and the codomain of σ is Y .

We say that L⊆FOR is a modal logic if the following conditions hold3: L contains all tautologies,
L contains the formula�(x→ y)→ (�x→ �y), L is closed for modus ponens (for all ϕ,ψ∈FOR, if

∗A long version of this paper is currently submitted to the Logic Journal of the IGPL.
1Globality is defined in Section 2.
2However, when we write that two substitutions are equal, this will imply in any case that their domains are equal and their

codomains are equal.
3The modal logics considered in this paper are exactly the normal modal logics considered in standard textbooks such

as [13, 14, 28].
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ϕ→ ψ∈L and ϕ∈L then ψ∈L), L is closed for generalization (for all ϕ∈FOR, if ϕ∈L then �ϕ∈L),
L is closed for uniform substitution (for all ϕ∈FOR, if ϕ∈L then for all substitutions (X,Y, σ), if
var(ϕ)⊆X then σ(ϕ)∈L). For all modal logics L and for all ϕ∈FOR, we write L ⊕ ϕ for the least
modal logic containing L and ϕ. The following modal logics — and their extensions — are considered
in this paper: K ⊕ ♦x → �♦x (denoted K5), K5 ⊕ �x → ��x (denoted K45), K5 ⊕ �x → x
(denoted S5), K denoting the least modal logic4. We say that a modal logic L is consistent if L6=FOR.
From now on in this paper, let L be a consistent modal logic. Let ≡L be the equivalence relation on
FOR defined for all ϕ,ψ∈FOR, by ϕ≡Lψ if and only if ϕ ↔ ψ∈L. We shall say that L is locally
tabular if for all finite X⊆VAR, ≡L possesses finitely many equivalence classes on FORX .

Proposition 1. If L contains K5 then L is locally tabular.

We say that ϕ∈FOR is L-derivable from Γ⊆FOR (in symbols Γ `L ϕ) if there exists n≥1 and
there exists ϕ1, . . . , ϕn∈FOR such that ϕn=ϕ and for all k∈{1, . . . , n}, at least one of the following
4 conditions holds: (i)ϕk∈L, (ii)ϕk∈Γ, (iii) there exists i, j∈{1, . . . , n} such that i, j<k andϕi=ϕj →
ϕk, (iv) there exists i∈{1, . . . , n} such that i<k and ϕk=�ϕi. Substitutions being completely de-
fined by the restrictions to their domains, it is possible to compare two substitutions by means of these
restrictions if their domains are equal. Let 'L be the equivalence relation on SUB defined for all
(X,Y, σ), (X,Z, τ)∈SUB, by (X,Y, σ)'L(X,Z, τ) if and only if for all x∈X , σ(x)↔ τ(x)∈L5. Let
4L be the quasi-order on SUB defined for all (X,Y, σ), (X,Z, τ)∈SUB, by (X,Y, σ)4L(X,Z, τ) if
and only if there exists (Z, T, υ)∈SUB such that for all x∈X , σ(x)↔ υ(τ(x))∈L6.

Proposition 2. If L is locally tabular then for all finiteX,Y⊆VAR,'L possesses finitely many equiv-
alence classes on SUBX,Y .

A frame is a couple (W,R) where W is a non-empty set and R is a binary relation on W 7. In
a frame (W,R), for all s∈W , let R(s)={t∈W : sRt} and for all U⊆W , let R(U)={t∈W : there
exists s∈U such that sRt}. We say that a frame (W,R) is generated from s∈W if for all t∈W , there
exists n≥0 and there exists u0, . . . , un∈W such that u0=s, un=t and for all i∈{1, . . . , n}, ui−1Rui.
A valuation on a frame (W,R) is a function assigning to each variable a subset of W . Given a frame
(W,R) and a valuation V on (W,R), the satisfiability of ϕ∈FOR at s∈W (in symbols (W,R), V, s|=ϕ)
is inductively defined as follows:

• (W,R), V, s|=x if and only if s∈V (x),

• (W,R), V, s6|=⊥,

• (W,R), V, s|=¬ϕ if and only if (W,R), V, s6|=ϕ,

• (W,R), V, s|=ϕ ∨ ψ if and only if either (W,R), V, s|=ϕ, or (W,R), V, s|=ψ,

• (W,R), V, s|=�ϕ if and only if for all t∈W , if sRt then (W,R), V, t|=ϕ.

We say that a formula ϕ is valid in a frame (W,R) (in symbols (W,R)|=ϕ) if for all valuations V
on (W,R) and for all s∈W , (W,R), V, s|=ϕ. We say that L is valid in a frame (W,R) (in symbols
(W,R)|=L) if for all ϕ∈L, (W,R)|=ϕ. For all frames (W,R), for all substitutions (X,Y, σ) and for

4Obviously, K45 contains K5. Moreover, as is well-known [23, Chapter 3], S5 contains K45.
5Obviously, for all (X,Y, σ), (X,Z, τ)∈SUB, if (X,Y, σ)'L(X,Z, τ) then for all ϕ∈FORX , σ(ϕ)↔ τ(ϕ)∈L.
6Obviously, for all (X,Y, σ), (X,Z, τ)∈SUB, if (X,Y, σ)4L(X,Z, τ) then there exists (Z, T, υ)∈SUB such that

for all ϕ∈FORX , σ(ϕ) ↔ υ(τ(ϕ))∈L. Moreover, for all (X,Y, σ), (X,Z, τ)∈SUB, if (X,Y, σ)'L(X,Z, τ) then
(X,Y, σ)4L(X,Z, τ).

7We assume the reader is at home with the relational semantics of modal logics. For more on this, see [13, 14, 28].
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all valuations V on (W,R), let V σ be the valuation on (W,R) such that for all x∈VAR, if x∈X then
V σ(x)={s∈W : (W,R), V, s|=σ(x)} else V σ(x)=V (x)8.

Proposition 3. Let (W,R) be a frame, (X,Y, σ) be a substitution and V be a valuation on (W,R). For
all ϕ∈FORX and for all s∈W , (W,R), V σ, s|=ϕ if and only if (W,R), V, s|=σ(ϕ).

Proposition 4. Let (W,R) be a frame such that (W,R)|=L. If L contains K5 then for all s∈W ,
if (W,R) is generated from s then exactly one of the following 3 conditions holds: (i) W={s} and
R=∅, (ii) R=W × W , (iii) there exists A,B⊆W such that A 6=∅, A⊆B, s6∈B, W={s} ∪ B and
R=({s} × A) ∪ (B × B). If L contains K45 then for all s∈W , if (W,R) is generated from s then
exactly one of the following 3 conditions holds: (iv) W={s} and R=∅, (v) R=W ×W , (vi) there
exists A⊆W such that A 6=∅, s6∈A, W={s} ∪A and R=({s} ×A) ∪ (A×A).

Let S be a frame (W,R) such that Card(W )=1 and R=∅. For all m≥1, let Tm be a frame (W,R)
such that Card(W )=m andR=W×W . For allm≥1 and for all n≥0, let U(m,n) be a frame (W,R) such
that there exists s∈W and there exists A,B⊆W such that A 6=∅, A⊆B, s6∈B, W={s} ∪B, R=({s} ×
A) ∪ (B ×B), Card(A)=m and Card(B)=m+ n.

Proposition 5. If L contains K5 then exactly one of the following conditions holds: (i) for all m≥1,
Tm|=L and S|=L, (ii) for all m≥1, Tm|=L and S6|=L, (iii) there exists m≥1 such that Tm|=L, there
exists n≥1 such that Tn 6|=L and S|=L, (iv) there exists m≥1 such that Tm|=L, there exists n≥1 such
that Tn 6|=L and S6|=L, (v) for all m≥1, Tm 6|=L.

We say that L is global if for all m,m′≥1 and for all n′≥0, if m=m′ + n′ and Tm|=L then
U(m′,n′)|=L. For all positive integers l, let ϕl=

∧{♦♦xk : 0≤k≤l} → ∨{♦♦(xi ∧ xj) : 0≤i<j≤l}.

Proposition 6. If either L=K5, or L=K5 ⊕ ♦>, or L=K5 ⊕ ϕl for some positive integer l, or
L=K5⊕ ϕl ⊕ ♦> for some positive integer l, or L=K5⊕�⊥ then L is global.

Proposition 7. If L contains K5 and L is global then either L=K5, or L=K5⊕ ♦>, or L=K5⊕ ϕl
for some positive integer l, or L=K5⊕ ϕl ⊕ ♦> for some positive integer l, or L=K5⊕�⊥.

Proposition 8. If L contains K5 then for all ϕ∈FOR, if ϕ6∈L then there exists a finite frame (W,R),
there exists a valuation V on (W,R) and there exists s∈W such that (W,R)|=L, (W,R) is generated
from s and (W,R), V, s6|=ϕ.

For all finite frames (W,R), for all valuations V on (W,R), for all s∈W and for all finiteX⊆VAR,
we say that a valuation V ′ on (W,R) is a variant of V with respect to s and X if for all x∈X , V ′(x) \
{s}=V (x)\{s}. We say that ϕ∈FOR has extension property in L if for all finite frames (W,R), for all
valuations V on (W,R) and for all s∈W , if (W,R)|=L and (W,R) is generated from s then there exists
a variant V ′ of V with respect to s and var(ϕ) such that (W,R), V ′, s|=♦�ϕ → ϕ. The following
result is essential for the proof of Proposition 23.

Proposition 9. If L contains K45 then for all ϕ∈FOR, ϕ has extension property in L.

For all finite X⊆VAR, for all finite frames (W,R), for all valuations V on (W,R) and for all
s∈W , let forX((W,R), s, V ) = {χ∈FORX : (W,R), V, s|=χ}. Obviously, forX((W,R), s, V ) is
an infinite subset of FORX . Nevertheless, when L is locally tabular, we will treat forX((W,R), s, V )
as if it is a finite subset of FORX . In that case, forX((W,R), s, V ) will also denote the conjunction
of all formulas in this finite subset.

8Such definition is standard [4, 16, 19, 20].
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3 Unification
An L-unifier of ϕ∈FOR is a substitution (var(ϕ), X, σ) such that σ(ϕ)∈L. We write ΣL(ϕ) to mean
the set of all L-unifiers of ϕ∈FOR. We say that ϕ∈FOR is L-unifiable if ΣL(ϕ)6=∅. Since L is closed
for uniform substitution, for all L-unifiable ϕ∈FOR, ΣL(ϕ) contains variable-free substitutions. We
say that an L-unifier σ of ϕ∈FOR is a most general L-unifier of ϕ if for all L-unifiers τ of ϕ, τ4Lσ.
We say that a set Σ of L-unifiers of an L-unifiable ϕ∈FOR is complete if for all L-unifiers σ of ϕ, there
exists τ∈Σ such that σ4Lτ

9. We say that a complete set Σ of L-unifiers of an L-unifiable ϕ∈FOR is
a basis for ϕ if for all σ, τ∈Σ, if σ4Lτ then σ=τ 10.

Proposition 10. For all L-unifiable ϕ∈FOR and for all bases Σ,∆ for ϕ, Σ and ∆ have the same
cardinality.

As a consequence of Proposition 10, an important question is the following: when ϕ∈FOR is L-
unifiable, is there a basis for ϕ? When the answer is “yes”, how large is this basis? For all L-unifiable
ϕ∈FOR, we say that ϕ is of type 1 if there exists a basis for ϕ with cardinality 1, ϕ is of type ω if there
exists a basis for ϕ with finite cardinality ≥2, ϕ is of type∞ if there exists a basis for ϕ with infinite
cardinality, ϕ is of type 0 if there exists no basis for ϕ11. We say that L is of type 1 if every L-unifiable
formula is of type 1, L is of type ω if every L-unifiable formula is either of type 1, or of type ω and there
exists an L-unifiable formula of type ω, L is of type ∞ if every L-unifiable formula is either of type
1, or of type ω, or of type∞ and there exists an L-unifiable formula of type∞, L is of type 0 if there
exists an L-unifiable formula of type 012. For all L-unifiable ϕ∈FOR, we say that ϕ is L-filtering if
for all L-unifiers σ, τ of ϕ, there exists an L-unifier υ of ϕ such that σ4Lυ and τ4Lυ.

Proposition 11. Let ϕ∈FOR be L-unifiable. If ϕ is L-filtering then ϕ is either of type 1, or of type 0.

We say that L has filtering unification if for all L-unifiable ϕ∈FOR, ϕ is L-filtering.

Proposition 12. If L has filtering unification then L is either of type 1, or of type 0.

The following result is essential for the proof of Proposition 25.

Proposition 13. If L contains K5 then for all L-unifiable ϕ∈FOR, ϕ is L-filtering.

For all ϕ∈FOR, a substitution (var(ϕ), var(ϕ), σ) is L-projective for ϕ if for all x∈var(ϕ), ϕ `L
x↔ σ(x).

Proposition 14. Let ϕ∈FOR. Let (W,R) be a finite frame, V be a valuation on (W,R) and s∈W be
such that (W,R)|=L, (W,R) is generated from s and (W,R), V, s|=♦�ϕ. If L contains K5 then for
all L-projective substitutions υ for ϕ, V υ is a variant of V with respect to s and var(ϕ).

Proposition 15. Let ϕ∈FOR and σ be an L-projective substitution for ϕ. For all ψ∈FORvar(ϕ),
ϕ `L ψ ↔ σ(ψ).

Proposition 16. Let ϕ∈FOR and σ be an L-projective substitution for ϕ. For all L-projective substi-
tutions τ for ϕ, σ ◦ τ is L-projective for ϕ.

9Obviously, for all L-unifiable ϕ∈FOR, ΣL(ϕ) is a complete set of L-unifiers of ϕ.
10Obviously, for all complete sets Σ of L-unifiers of an L-unifiable ϕ∈FOR, Σ is a basis for ϕ if and only if Σ is a minimal

complete set of L-unifiers of ϕ, i.e. for all ∆⊆Σ, if ∆ is a complete set of L-unifiers of ϕ then ∆=Σ.
11Obviously, the types 1, ω,∞ and 0 constitute a set of jointly exhaustive and pairwise distinct situations for each L-unifiable

ϕ∈FOR.
12That is to say, the types 1, ω,∞ and 0 being ordered by 1<ω<∞<0, the unification type of L is the greatest one among

the types of its unifiable formulas.
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Proposition 17. Let ϕ∈FOR and σ be an L-projective substitution for ϕ. For all L-unifiers τ of ϕ,
τ4Lσ.

For all L-unifiable ϕ∈FOR, we say that ϕ is L-projective if there exists an L-projective L-unifier
of ϕ.

Proposition 18. Let ϕ∈FOR be L-unifiable. If ϕ is L-projective then ϕ is of type 1.

We say that L has projective unification if for all L-unifiable ϕ∈FOR, ϕ is L-projective.

Proposition 19. If L has projective unification then L is of type 1.

The following result is essential for the proof of Proposition 23.

Proposition 20. If L contains K5 then for all L-unifiable ϕ∈FOR, ϕ is L-projective if and only if ϕ
has extension property in L.

The following result is essential for the proof of Proposition 25.

Proposition 21. If L contains K5 and L is global then for all L-unifiable ϕ∈FOR and for all L-
unifiers σ of ϕ, there exists ψ∈FORvar(ϕ) such that σ(ψ)∈L, ψ → ϕ∈K, ψ is L-projective.

4 Extensions of K5

Firstly, let us consider the extensions of K45.

Proposition 22. If L contains K45 then for all L-unifiable ϕ∈FOR, ϕ is L-projective.

Proposition 23. If L contains K45 then L has projective unification.

Secondly, let us consider the extensions of K5.

Proposition 24. If L contains K5 and L is global then for all L-unifiable ϕ∈FOR, ϕ is of type 1.

Proposition 25. If L contains K5 and L is global then L is of type 1.

Notice that the line of reasoning leading to Propositions 23 and 25 rules out neither the possibility
that all extensions of K5 have projective unification, nor the possibility that some nonglobal extension
of K5 is either of type ω, or of type∞, or of type 013.

5 Conclusion
A property similar to the extension property has been used by Ghilardi who has proved both in In-
tuitionistic Logic [19] and in transitive modal logics like K4 and S4 [20] that it is equivalent to the
projectivity of formulas. This property has also been considered in [12] where formulas verifying it are
called extendible formulas. As a matter of fact, Bezhanishvili and de Jongh have provided a complete
characterization in Intuitionistic Logic of the set of all extendible formulas with at most 2 variables.
However, the question remains unsettled whether a complete characterization in Intuitionistic Logic of
the set of all extendible formulas with at least 3 variables can be given. Within the context of extensions
of K5, we believe that it is probably easier to give a complete characterization of the set of all formulas
verifying the extension property.

13No modal logic is known to be of type∞ [16, Chapter 5].
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Abstract

Unification in the Description Logic (DL) FL0 is known to be ExpTime-complete, and
of unification type zero. We investigate in this paper whether a lower complexity of the
unification problem can be achieved by either syntactically restricting the role depth of
concepts or semantically restricting the length of role paths in interpretations. We will
show that the answer to this question depends on whether the number formulating such
a restriction is encoded in unary or binary. We will also show that the unification type of
FL0 improves from type zero to unitary (finitary) for unification without (with) constants.

1 Introduction
Unification of concept patterns has been proposed as an inference service in Description Logics
that can, for example, be used to detect redundancies in ontologies. For the DL FL0, which has
the concept constructors conjunction (u), value restriction (∀r.C), and top concept (>), unifi-
cation was investigated in detail in [4]. It was shown there that unification in FL0 corresponds
to unification modulo the equational theory ACUIh since (modulo equivalence) conjunction is
associative (A), commutative (C), idempotent (I) and has top as a unit (U), and value restric-
tions behave like homomorphisms for conjunction and top (h). For this equational theory, it
had already been shown in [1] that it has unification type zero, which means that a solvable
unification problem need not have a minimal complete set of unifiers, and thus in particular
not a finite one. From the DL point of view, the decision problem is, however, more interesting
than the unification type. Since ACUIh is a commutative/monoidal theory [1, 12], solvability
of ACUIh unification problems (and thus of unification problems in FL0) can be reduced to
solvability of systems of linear equations in a certain semiring, which for the case of ACUIh
consists of finite languages over a finite alphabet, with union as semiring addition and con-
catenation as semiring multiplication [4]. By a reduction to the emptiness problem for certain
tree automata, it was then shown in [4] that solvability of the linear equations corresponding
to an FL0 unification problem can be decided in exponential time. In addition, by a reduction
from the intersection emptiness problem for deterministic root-to-frontier tree automata [14],
ExpTime-hardness of this problem was proved in [4].

In the present paper, we investigate two kinds of restrictions on unification in FL0. On the
one hand, we syntactically restrict the role depth (i.e., the maximal nesting of value restrictions)
in the concepts obtained by applying a unifier to be below a certain bound k. This restriction
was motivated by a similar restriction used in research on least common subsumers (lcs) [13],
where imposing a bound on the role depth guarantees existence of the lcs also in the presence of
a (possibly cyclic) terminology. Also note that such a restriction was used in [9] for the theory
ACh, for which unification is known to be undecidable [11]. It is shown in [9] that the problem
becomes decidable if a bound on the maximal nesting of applications of homomorphisms is
imposed. On the other hand, we consider a semantic restriction where, when defining the
semantics of concepts, only interpretations for which the length of role paths is bounded by a
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given number k are considered. A similar restriction (for k = 1) was employed in [7] to improve
the unification type from type zero for the modal logic K [8] to unitary or finitary for K+22⊥.

In the present paper we show that both the syntactic and the semantic restriction ensures
that the unification type of FL0 (and equivalently, of the theory ACUIh) improves from type
zero to unitary for unification without constants and finitary for unification with constants.
Regarding the decision problem, we can show that the complexity depends on whether the
bound k is assumed to be encoded in unary or binary.1 For binary encoding of k, the complexity
stays ExpTime, whereas for unary coding it drops from ExpTime to PSpace. This is again the
case both for the syntactic and the semantic restriction. Detailed proofs of these result can be
found in [3]. A longer version of this abstract is accepted by the conference FroCoS 2021 [2].

2 Unification in FL0

Starting with mutually disjoint countably infinite sets NC and NR of concept and role names,
respectively, the set of FL0 concepts is inductively defined as follows:

• > (top concept) and every concept name A ∈ NC is an FL0 concept,

• if C, D are FL0 concepts and r ∈ NR is a role name, then C uD (conjunction)
and ∀r.C (value restriction) are FL0 concepts.

The semantics of FL0 concepts is defined using first-order interpretations I = (∆I , ·I) consist-
ing of a non-empty domain ∆I and an interpretation function ·I that assigns a set AI ⊆ ∆I to
each concept name A, and a binary relation rI ⊆ ∆I ×∆I to each role name r. This function
is extended to FL0 concepts as follows:

>I = ∆I , (C uD)I = CI ∩DI , (∀r.C)I = {x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ rI ⇒ y ∈ CI}.

Given two FL0 concepts C and D, we say that C is subsumed by D (written C v D) if
CI ⊆ DI holds for all interpretations I, and that C is equivalent to D (written C ≡ D) if
C v D and D v C. It is well known that subsumption (and thus also equivalence) of FL0

concepts can be decided in polynomial time [10].
In unification, we consider concepts that may contain variables, which can be replaced by

concepts. More formally, we introduce a countably infinite set NV of concept variables, which is
disjoint with NC and NR. An FL0 concept pattern is an FL0 concept that is constructed using
NC ∪NV as concept names. The semantics of such concept patterns is defined as for concepts,
i.e., concept variables are treated like concept names when defining the semantics. This way, the
notions of subsumption and equivalence (both in the restricted and in the unrestricted setting)
transfer from concepts to concept patterns in the obvious way.

A substitution σ is a mapping from NX into the set of all FL0 concept patterns such that
dom(σ) := {X ∈ NV | σ(X) 6= X} is finite. This mapping is extended to concept patterns as
follows:

• σ(A) := A for all A ∈ NC ∪ {>},

• σ(C uD) := σ(C) u σ(D) and σ(∀R.C) := ∀R.σ(C).

An FL0 unification problem is an equation of the form C ?≡ D where C,D are FL0 concept
patterns. A unifier of this equation is a substitution σ such that σ(C) ≡ σ(D).

1For unary coding, the size of the input k is the k, whereas for binary coding it is log k.
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It was shown in [4] that the question of whether a given FL0 unification problem has a
unifier or not can be reduced to solving linear language equations, i.e., equations of the form

S0 ∪ S1·X1 ∪ · · · ∪ Sn·Xn = T0 ∪ T1·X1 ∪ · · · ∪ Tn·Xn, (1)

where S0, . . . , Sn, T0, . . . , Tn are finite languages of words over the alphabet ∆ of all role names
and X1, . . . , Xn are variables for finite languages over ∆. A solution of the equation (1) is an
assignment θ of finite languages θ(Xi) ⊆ ∆∗ to the variables Xi (for i = 1, . . . , n) such that

S0 ∪ S1·θ(X1) ∪ · · · ∪ Sn·θ(Xn) = T0 ∪ T1·θ(X1) ∪ · · · ∪ Tn·θ(Xn), (2)

where ∪ is interpreted as union and · as concatenation. Note that a word w = r1 . . . r` in such
a solution corresponds to a conjunct ∀r1. · · · ∀r`.A in the unified concept σ(C) ≡ σ(D).

It was shown in [4] that checking solvability of linear language equations can be reduced to
testing emptiness of tree automata. More precisely, the tree automata employed in [4] work
on finite node-labelled trees, going from the root to the leaves. Such automata are called root-
to-frontier tree automata (RFAs) in [4]. Basically, given a linear language equation, one can
construct an RFA whose size is exponential in the size of the language equation, and which
accepts some tree iff the language equation has a solution. Since the emptiness problem for
RFAs is polynomial, this yields an ExpTime upper bound for solvability of linear language
equations. The matching ExpTime lower bound was proved in [4] by a reduction from the
intersection emptiness problem for deterministic RFAs (DRFAs).

3 Syntactically Restricted Unification in FL0

The role depth of an FL0 concept is the maximal nesting of value restrictions in this concept.
To be more precise, we define the role depth rd(C) of an FL0 concept C by induction:

• rd(>) = rd(A) = 0 for all A ∈ NC ,
• rd(C uD) = max(rd(C), rd(D)) and rd(∀r.C) = 1 + rd(C).

For an integer k ≥ 1 and FL0 concepts C and D (equal > or not containing any occurrences of
>), we define subsumption and equivalence restricted to concepts of role depth ≤ k as follows:

• C vksyn D if C v D and max(rd(C), rd(D)) ≤ k,

• C ≡ksyn D if C vksyn D and D vksyn C.
The effect of this definition is that subsumption and equivalence can only hold for concepts that
satisfy the restriction of the role depth by k. For concepts satisfying this syntactic restriction,
the relations vksyn and ≡ksyn coincide with the classical subsumption and equivalence relation
on FL0 concepts.

For an integer k ≥ 1, a syntactically k-restricted unification problem is an equation of the
form C?≡ksynD, where C,D are FL0 concept patterns (equal> or not containing any occurrences
of >). A unifier of this equation is a substitution σ such that σ(C) ≡ksyn σ(D).

Due to the definition of ≡ksyn and the correspondence between words in a solution of (1) and
nested value restrictions in the unified concept, the question of whether a given syntactically k-
restricted unification problem has a unifier or not can be reduced to checking whether language
equations of the form (1) have solutions θ such that

S0 ∪ S1·θ(X1) ∪ · · · ∪ Sn·θ(Xn) = T0 ∪ T1·θ(X1) ∪ · · · ∪ Tn·θ(Xn) ⊆ ∆≤k, (3)

3
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where ∆≤k denotes the set of words over ∆ of length at most k.
We can test for the existence of such a solution by modifying the automata construction

in [4] for testing existence of a solution in the unrestricted case. The depth of the trees accepted
by the constructed automaton A corresponds to the length of the longest word in the solved
equation. Thus, to find a solution satisfying (3), we must check whether A accepts a tree of
depth ≤ k. We can achieve this restriction by adding a counter to the states of the automaton
that is decremented whenever we go from a node in the tree to a successor node. As soon as
the counter reaches 0, no more transitions are possible. This idea can be used to show the
complexity upper bounds in the following theorem.

Theorem 1. Given an integer k ≥ 1 and FL0 concepts C,D as input, the problem of deciding
whether the syntactically k-restricted unification problem C ?≡ksyn D has a unifier or not is
ExpTime-complete if the number k is assumed to be encoded in binary, and PSpace-complete if
k is assumed to be encoded in unary.

Regarding the PSpace upper bound, one cannot construct the exponentially large modified
automaton Aksyn before testing it for emptiness, but rather constructs the relevant parts of Aksyn
on-the-fly while doing the emptiness test. The ExpTime lower bound is an easy consequence
of the fact that the automaton A accepts a tree iff it accepts one of depth linear in the size of
A (which is exponential in the size of the input equation). Showing the PSpace lower bound
is more challenging. For this, we had to prove the following k-restricted variant of Seidl’s
ExpTime hardness result [14] for the intersection emptiness problem for deterministic RFAs
(DRFAs). The k-restricted intersection emptiness problem for DRFAs asks whether a given
finite collection of DRFAs accepts a common tree of depth at most k.

Proposition 2. The k-restricted intersection emptiness problem for DRFAs is PSpace-complete
if the number k is represented in unary.

4 Semantically Restricted Unification in FL0

For an integer n ≥ 1 and a given interpretation I = (∆I , ·I), a role path of length n is a
sequence d0, r1, d1, . . . , dn−1, rn, dn, where d0, . . . , dn are elements of ∆I , r1, . . . , rn are role
names, and (di−1, di) ∈ rIi holds for all i = 1, . . . , n. The interpretation I is called k-restricted
if it does not admit any role paths of length > k.

For an integer k ≥ 1 and FL0 concepts C and D, we define subsumption and equivalence
restricted to interpretations with role paths of length ≤ k as follows:

• C vksem D if CI ⊆ DI holds for all k-restricted interpretations I,

• C ≡ksem D if C vksem D and D vksem C.

The effect of this notion of equivalence is that all concepts occurring at a role depth > k can
be replaced by >, and thus can be removed.

For an integer k ≥ 1, a semantically k-restricted unification problem is an equation of
the form C ?≡ksem D, where C,D are FL0 concept patterns. A unifier of this equation is a
substitution σ such that σ(C) ≡ksem σ(D).

Whereas in the syntactically restricted case a sequence of value restrictions of depth > k
(a word of length > k) destroys the property of being a unifier (solution), in the semantically
restricted case one can simply ignore such sequences (words). Thus, one can reduce the question

4
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of whether a given semantically k-restricted unification problem has a unifier or not to checking
whether, for language equations of the form (1), there is an assignment θ such that

(S0 ∪ S1·θ(X1) ∪ · · · ∪ Sn·θ(Xn)) ∩∆≤k = (T0 ∪ T1·θ(X1) ∪ · · · ∪ Tn·θ(Xn)) ∩∆≤k. (4)

Note that, in general, such an assignment need not be a solution of (1), but clearly any solution
θ of (1) also satisfies (4).

To check for the existence of a solution of (1) satisfying (4), we again add a counter to the
states of the automaton A, but now accept as soon as the counter goes below the value 0. This
yields the complexity upper bounds in the following theorem. The PSpace lower bound for
the unary case can be shown by a reduction from syntactically k-restricted unification. If k is
encoded in binary, then this reduction is no longer polynomial. It is an open problem whether,
for the case of binary coding, the ExpTime upper bound stated below is tight.

Theorem 3. Given an integer k ≥ 1 and FL0 concepts C,D as input, the problem of deciding
whether the semantically k-restricted unification problem C ?≡ksem D has a unifier or not is
in ExpTime if the number k is assumed to be encoded in binary, and PSpace-complete if k is
assumed to be encoded in unary.

5 The Unification Type

Until now, we were mainly interested in the complexity of deciding solvability of unification
problems. Now, we want to investigate the question of whether all unifiers of a given unification
problem can be represented as instances of a finite set of unifiers, where the instance relation
between unifiers is defined in the usual way [6, 3].

A set of unifiersM of an FL0 unification problem C ?≡D is complete if any unifier of C ?≡D
is an instance of some element of M . This set is minimal if no two distinct elements of M are
comparable w.r.t. the instance relation. The unification problem C ?≡D has type zero if it does
not have a minimal complete set of unifiers. Note that this implies that C ?≡D does not have
a finite complete set of unifiers since such a set could be made minimal by removing unifiers
that are instances of others [6]. Saying that FL0 has unification type zero means that there is
an FL0 unification problem that has type zero.

The fact that FL0 has unification type zero follows from a result in [1], which states that the
equational theory ACUIh has unification type zero. In fact, it was shown in [4] that equivalence
≡ of FL0 concepts can be axiomatized by the equational theory

ACUIh := { (x ∧ y) ∧ z = x ∧ (y ∧ z), x ∧ y = y ∧ x, x ∧ x = x, x ∧ 1 = x }
∪ { hr(x ∧ y) = hr(x) ∧ hr(y), hr(1) = 1 | r ∈ NR },

where ∧, hr, and 1 in the terms respectively correspond to u, ∀r., and > in the concepts. These
identities say that ∧ is associative (A), commutative (C), and idempotent (I) with unit 1 (U),
and that the unary function symbols hr behave like homomorphisms (h) for ∧ and 1.

For our restricted settings, the unification type of FL0 is finitary for unification with con-
stants and unitary for unification without constants. The former statement means that any
solvable (semantically or syntactically) k-restricted unification problem has a finite complete
set of unifiers. The latter statement means that any solvable (semantically or syntactically)
k-restricted unification problem not containing concept constants from NC has a complete set
of unifiers of cardinality 1.

5
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For the semantically restricted case, it is easy to see that the equivalence ≡ksem can be
axiomatized by adding identities to ACUIh that say that nesting of homomorphisms of depth
> k produces the unit. Given a word u = r1r2 . . . rn ∈ N∗R, we denote a term of the form
hr1(hr2(· · ·hrn(t) · · · )) as hu(t). It is now easy to see that ≡ksem is axiomatized by

ACUIhk := ACUIh ∪ {hu(x) = 1 | u ∈ N∗R with |u| = k + 1}.

Both ACUIh and ACUIhk are so-called commutative/monoidal theory [1, 12, 5], for which
unification can be reduced to solving linear equations over a corresponding semiring. For ACUIh
this semiring consists of finite languages over the alphabet ∆ of all role names with union as
addition and concatenation as multiplication [4]. As shown in [3], the semiring corresponding to
ACUIhk consists of the subsets of ∆≤k, with union as addition and the following multiplication:
L1·kL2 = (L1·L2) ∩∆≤k.

We can now apply general results for commutative/monoidal theories [1, 12, 5] to determine
the unification type of FL0 in the semantically restricted case. These results imply that the
unification type of a commutative/monoidal theory is unitary (finitary) for unification without
(with) constants if the corresponding semiring is finite. Since the semiring corresponding to
ACUIhk consists of the subsets of the finite set ∆≤k, it is clearly finite, which yields the following
theorem.

Theorem 4. Unification in ACUIhk, and thus also semantically k-restricted unification in
FL0, is unitary for unification without constants and finitary for unification with constants.

For the syntactically restricted case, the results for commutative/monoidal theories do not
apply directly, but we can show the same results as for the semantically restricted case, using
the ideas underlying the proofs in [1, 12].

Theorem 5. Syntactically k-restricted unification in FL0 is unitary for unification without
constants and finitary for unification with constants.

The first step towards showing these results is to restrict the number of variables that need
to occur in elements of a complete set of unifiers. To be more precise, let c denote the (finite)
cardinality of ∆≤k. Then we can show that, if a syntactically k-restricted unifier of C ?≡ksyn D
introduces more than 2c·n variables, it is an instance of a syntactically k-restricted unifier that
introduces at least one variable less. Thus, there always is a complete set of unifiers that
contains only unifiers introducing at most 2c·n different variables. Once we have restricted
the unifiers in the complete set to ones using only finitely many variables, it is easy to show
that, up to equivalence, there can be only finitely many unifiers in this set. This proves that
syntactically k-restricted unification in FL0 is finitary for unification with constants.

For unification without constants, one can combine the unifiers in a finite complete set
{σ1, . . . , σκ} of syntactically k-restricted unifiers of C ?≡ksyn D into a single substitution σ by
setting

σ(X) = σ1(X) u . . . u σκ(X) for all variables X occurring in C,D.

If we assume (without loss of generality) that the variables occurring in the ranges of the unifiers
σi are disjoint and that no concept constant occurs in the range, then it is easy to show that σ
is also a syntactically k-restricted unifier of C ?≡ksyn D, and has the substitutions σ1, . . . , σκ as
instances. Consequently, the singleton set {σ} is a complete set of unifiers of C ?≡ksyn D.
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Abstract

This is a work in progress on solving equations and disequations between nominal terms,
i.e, we are interested in the nominal disunification problem. In the standard nominal syntax,
α-equality (s ≈α t) between two nominal terms s and t is defined using a freshness predicate
(a#t) meaning “atom a is fresh for t”. Recently, an alternative syntax was proposed
using fixed-point constraints instead of freshness constraints. Using fixed-point constraints,
nominal commutative (C) unification is finitary whilst it is not finitary if freshness constraints
are used to represent solutions. With the (future) goal of investigating nominal disunification
problems modulo equational theories, whose solvability via freshness constraints may be
problematic, we exploit this fixed-point approach to solve nominal disunification problems:
we provide an algorithm to compute finite and complete sets of solutions for nominal
disunification problems consisting of equations, disequations and fixed-point constraints.
This is a first step towards solving nominal C-disunification problems.

1 Introduction

This paper is about solving equations (s ≈?
α t) and disequations (s 6≈?

α t) between nomi-
nal terms, that is, it concerns the nominal disunification problem [3], which has the form
〈si ≈?

α ti (1 ≤ i ≤ n), uj 6≈?
α vj (1 ≤ j ≤ m)〉.

Nominal techniques are useful for the treatment of languages involving binders [6]. In this
approach, bindings are implemented through the abstraction of atoms, and atom permutations
are used to implement renamings. For this, freshness constraints (which have the form a#t) and
α-equivalence constraints (which have the form s ≈α t) are considered. Intuitively, a#t means
that the atom a cannot occur free in the term t. This concept was formalised in [7] using the
quantifier new ( N) which, in nominal logic, quantifies over new names. Such formalisation is
expressed by the following sentence: a#x⇔ ( Na′)(a a′) · x = x, that is, a is fresh in x if, and
only if, for any new atom a′, the permutation (a a′) fixes x. For example, consider the formula
φ = ∀[a]P . In this case, a is an abstracted name, therefore a#φ, which is equivalent to saying
that the renaming of a by a new name a′ still preserves φ, that is, ( Na′)(a a′) · φ ≈α φ.

This observation lead to a new axiomatisation of α-equivalence of nominal terms using
fixed-point constraints instead of freshness constraints [2]. Fixed-point constraints have the

form π · t f≈α t (read “the permutation π fixes the term t”). For nominal unification problems,

∗Author partially funded by Capes and CNPq.
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there is a direct correspondence between solutions expressed using freshness constraints and
solutions expressed using fixed-point constraints, but in the presence of commutative theories
the method via fixed point stands out.

Let ≈α,C denote α-equivalence modulo commutativity. Using freshness constraints, the
equation (a b) · X ≈?

α,C X has a unifier 〈a, b#X, Id〉 [9], but this is not the only solution.
Indeed there are infinite solutions {X 7→ a+ b}, {X 7→ (a+ b) + (a+ b)}, {X 7→ f(a+ b)}, . . .
While nominal unification is finitary [9], when equational theories are involved, this property
is lost if solutions are represented using freshness constraints, as shown in [1]. Note that
(a b) · (a+ b) = b+a ≈α,C a+ b, so the permutation (a b) fixes the term a+ b, although the atoms
a and b occur free in a+ b. With the fixed-point approach, the nominal unification algorithm
(modulo commutativity) computes a finite complete set of unifiers [2]. Fixed-point equations
appeared for the first time in [8] in the context of nominal unification with recursive let, but the
authors used the standard notion of freshness to develop their work.

Recently, in [3], a method was proposed to decide the nominal disunification problem, which
is an extension of the first-order disunification problem defined in [4], where the α-equivalence
relation is built using permutations and freshness. The idea is simple: one checks if the set of
equations associated to the disequations, i.e., 〈uj ≈?

α vj(1 ≤ j ≤ m)〉 is satisfiable, if yes (with
solution set S), remove the solutions of 〈si ≈?

α ti(1 ≤ i ≤ n)〉 that are instances of S. Therefore,
the proposed nominal disunification algorithm relies on the existence of a finite representation of
solutions for nominal unification problems. For this reason, the nominal disunification algorithm
proposed in [3], which represents solutions using freshness constraints, cannot be used to solve
nominal C-disunification problems.

In this work we define the nominal disunification problem via fixed-point constraints (Def-
inition 3.1) and we extend to this approach several concepts necessary for the study of its
decidability: a new notion of solution for this problem (Definition 3.4) which depends on the
concept of pair with exceptions (Definition 3.2) as well as its consistency (Definition 3.3). We
prove consistency results (Corollary 3.1) and present the algorithm (Algorithm 2) to obtain
a complete set of solutions (Theorem 3.1). This is a first step towards the development of
extensions of the nominal disunification problem that involve equational theories.

2 Preliminaries

We assume familiarity with nominal techniques and briefly recall basic notions for a fixed-point
approach to nominal syntax. For a detailed treatment, the reader is referred to [2].

Nominal Terms. We fix countable infinite pairwise-disjoint sets of atoms A = {a, b, c, . . .},
variables X = {X,Y, . . .} and a signature Σ, a finite set of function symbols with fixed arity. We
follow Gabbay’s permutative convention: atoms a, b range permutatively over A. A permutation
π is a bijection A→ A such that dom(π) := {a ∈ A | π(a) 6= a} is finite. The identity permutation
is id and π ◦ ρ the composition of π and ρ.

Nominal terms are given by the grammar: s, t := a | π · X | [a]t | f(t1, . . . , tn) where
a is an atom, π · X is a moderated variable, [a]t is the abstraction of a in the term t, and
f(t1, . . . , tn) is a function application with f : n ∈ Σ. We abbreviate an ordered sequence
t1, . . . , tn of terms by t̃. Permutation action on terms is given by: π · a = π(a), π · (π′ ·X) =
(π ◦ π′) ·X, π · ([a]t) = [π(a)](π · t), and π · f(t1, . . . , tn) = f(π · t1, . . . π · tn). Substitutions are
finite mappings from variables to terms. A substitution σ is lifted to a map over terms by:
aσ = a, (π ·X)σ = π · (Xσ), ([a]t)σ = [a](tσ), and f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ). Note that
t(σγ) = (tσ)γ.

2
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π(a) = a
(fa)

Υ ` π f a
dom(πρ

−1
) ⊆ dom(perm(Υ|X))

(fv)
Υ ` π f ρ ·X

Υ ` π f ti
(ff)

Υ ` π f f(t̃)

(
f≈α a)

Υ ` a f≈α a

Υ, (c1 c2) f Var(t) ` π f (a c1) · t
(fab)

Υ ` π f [a]t

Υ ` ti
f≈α t′i

(
f≈α f)

Υ ` f(t̃)
f≈α f(t̃′)

Υ ` t f≈α t′
(
f≈α [a])

Υ ` [a]t
f≈α [a]t′

dom((π′)−1 ◦ π) ⊆ dom(perm(Υ|X))
(
f≈αv)

Υ ` π ·X f≈α π′ ·X
Υ ` s f≈α (a b) · t Υ, (c1 c2) f Var(t) ` (a c1) f t

(
f≈α ab)

Υ ` [a]s
f≈α [b]t

Table 1: Fixed-point and equality rules. c1 and c2 are new atoms.

Term-equality via fixed-point constraints. Following the fixed-point approach [2], we

axiomatise nominal α-equivalence in terms of both a fixed-point f and term-equality
f≈α

predicates. Intuitively, π f t means that π has no effect on t except by permuting abstracted

names, while s
f≈α t means that s and t are α-equivalent. For instance, (a b) f [a]a but not

(a b)f f(a). In order to formally define judgement derivations for fixed-point (Υ ` π f t) and

term-equality (Υ ` s f≈α t), we need to introduce some notation.

A fixed-point context Υ is a set of primitive fixed-point constraints of the form πfX. Given
two permutations π and ρ, the permutation πρ = ρ ◦ π ◦ ρ−1 denotes the conjugate of π with
respect to ρ. The set Var(Υ) contains all the variables mentioned in the fixed-point context Υ
and perm(Υ|X) := {π | πfX ∈ Υ} as the set of permutations of Υ with respect to X ∈ Var(Υ).
We write πfVar(t) as an abbreviation for {πfX | X ∈ Var(t)}. Derivability for the judgements

Υ ` π f t and Υ ` s f≈α t is therefore defined by the derivation rules in Figure 1.

Nominal Unification via Fixed-Point Constraints. A nominal unification problem Pr is

a finite set of fixed-point (πf? t) and equality (s
f≈
?

α t) constraints. A solution to this problem is
a pair 〈Φ, σ〉 consisting of a context Φ and substitution σ satisfying: (i) Φ ` πf tσ, if πf? t ∈ Pr,

and (ii) Φ ` sσ f≈α tσ, if s
f≈
?

α t ∈ Pr. As usual, the set of solutions U(Pr) for Pr is ordered
via an instantiation ordering: 〈Φ1, σ1〉 ≤ 〈Φ2, σ2〉 iff there exists a substitution δ such that

Φ2 ` Xσ2
f≈α Xσ1δ and Φ2 ` Φ1δ, for all X ∈ X. In this case, the pair 〈Φ2, σ2〉 is an instance

of the pair 〈Φ1, σ1〉.
In [2] a rule-based algorithm (unifyf) was proposed to compute solutions of these problems,

if any exists. It applies the rules in Table 1 bottom-up plus rules for instantiating variables:

(
f≈α inst1) Pr ] {π ·X f≈

?

α t}
[X 7→π−1·t]

=⇒ Pr{X 7→ π−1 · t}, if X /∈ Var(t)

(
f≈α inst2) Pr ] {t f≈

?

α π ·X}
[X 7→π−1·t]

=⇒ Pr{X 7→ π−1 · t}, if X /∈ Var(t)

The algorithm was shown to be terminating, sound, and complete.

A matching-in-context problem has the form (Φ ` s) ≈? (Υ ` t), it is a version of the nominal
unification problem in which only one side can be instantiated (here, the right-hand side) and,
in addition, the contexts Φ,Υ have to be satisfied. A solution to a matching problem is a

substitution δ satisfying: Φ ` s f≈α tδ,Υδ. Matching-in-context, also called pattern-matching,
was introduced in [5] to define nominal rewriting (using freshness constraints).

3
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3 Nominal Disunification via Fixed-Point Constraints

This section contains the contributions that extend [3]. Next, we define the nominal disunification
problem via fixed-point constraints.

Definition 3.1. A nominal disunification problem Pf is a pair 〈Pr || Df〉 of the form Pf =

〈 Pr || u1 6
f≈
?

α v1, . . . , um 6
f≈
?

α vm〉, where Pr is a nominal unification problem and Df consists of
a finite (possibly empty) set of nominal disequations.

In contrast with unification, where we are interested in solving equations, disunification
problems enrich unification problems with disequations. The intuition is that disequations are
constraints on the way we instantiate solutions of the equations we want to solve. For instance,

Pf = 〈X f≈
?

α f(Y ) || Y 6f≈
?

α a, Y 6
f≈
?

α b〉 expresses that, while solving the equation X
f≈
?

α f(Y ), a
solution must also satisfy the constraint that no instance of it is allowed to map X to f(a) nor
X to f(b). Therefore, while [X 7→ f(c)], which is a grounding instance of the mgu [X 7→ f(Y )],
validates the constraints imposed by Pf, the instance [X 7→ f(a)] does not.

The next example illustrates this principle when fixed-point constraints are taken into
account.

Example 3.1. Consider Pf = 〈X f≈
?

α (a b) · Y || [a]X 6f≈
?

α [b]Y 〉. The substitution [X 7→ (a b) · Y ]

solves the equational part. In order to get the set of constraints imposed by [a]X 6f≈
?

α [b]Y , we solve

the equation [a]X 6f≈α [b]X associated to it. The equation associated to the disequation is [a]X
f≈
?

α

[b]Y . Using the rule (
f≈αab) in Table 1, the fact that the system is syntax-directed, and satisfies

the inversion property it follows that [a]X
f≈

?

α [b]Y iff {X f≈
?

α (a b) · Y, (a c1) f? Y, (c1 c2) f? Y },
where c1, c2 are new names.

The solutions for Pf are all the instances of the pair 〈Φ, σ〉 = 〈∅, [X 7→ (a b) · Y ]〉 that do
not satisfy (a c1)f? Y, (c1 c2)f? Y .

The example above shows that we need the information of new names that are generated
when we solve equations associated to disequations.

Definition 3.2. Let Pf be a disunification problem. A pair with exceptions for Pf, denoted as
〈Φ, σ〉 −Θ, consists of a pair 〈Φ, σ〉 and an indexed family Θ of the form {〈∇1

l ]∇2
l , θl〉 | l ∈ I},

where ∇2
l is a (possibly empty) set of primitive fixed-point constraints involving new names, i.e.,

names not occurring anywhere in Pf.

The notion of pair with exceptions is key for the representation of solutions of a disunification
problem: it will impose restrictions (the exceptions) on how these solutions can be instantiated.
Intuitively, Θ consists of pairs of solutions of the equations associated to the disequations in Pf.

Definition 3.3. Let Pf be a disunification problem. Let c be a set of new atoms and X be the

set of variables of Pf. We denote by Φc,X the extension of Φ with a set of primitive constraints
(c1 c2)fX for every pair c1, c2 in c and X ∈ X. We say that

(i) 〈Φ, σ〉 is an instance of a family Θ = {〈∇1
l ]∇2

l , θl〉 | l ∈ I} iff every instance of 〈Φc,X , σ〉,
is an instance of some 〈∇1

l ] ∇2
l , θl〉 ∈ Θ, where ∇2

l consists of primitive fixed-point
constraints involving new names, c are all the new names occurring in ∇2

l for any l.

(ii) 〈∆, λ〉 is an instance of 〈Φ, σ〉 −Θ iff 〈∆, λ〉 is an instance of 〈Φ, σ〉 but not of Θ.

4
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(iii) A pair with exceptions 〈Φ, σ〉 −Θ is consistent iff it has at least one instance.

Lemma 3.1 (Inconsistency Lemma). A pair with exceptions 〈Φ, σ〉 −Θ is inconsistent if and
only if 〈Φ, σ〉 is an instance of Θ.

The next result is the basis for an algorithm (Algorithm 1) to test the consistency of a pair
with exceptions 〈Φ, σ〉 −Θ for Pf. It suffices to solve matching-in-context problems of the form

(Φc,X ` Xσ) ≈? (∇1
l ]∇2

l ` Xθl) for every variable X in Pf, Differently from [3], here we check

the domain of the permutations in Φc,X |X and in an instance1 〈(∇1
l ]∇2

l )δ〉nf|X for X in Pf.

Corollary 3.1. Let 〈Φ, σ〉 − Θ be a pair with exceptions for Pf. If there is some
〈∇1

l ] ∇2
l , θl〉 ∈ Θ such that there exists a solution δ for the matching-in-context problems

(Φc,X ` Xσ) ≈? (∇1
l ] ∇2

l ` Xθl), for all X ∈ Pf, then 〈Φ, σ〉 −Θ is inconsistent. Moreover,

dom(perm(〈(∇1
l ]∇2

l )δ〉nf|X)) ⊆ dom(perm((Φc,X |X)) for each X.

The corollary provides a method for checking for consistency of a pair with exceptions for a
problem Pf:

Algorithm 1: Consistency Test

input: a finite pair with exceptions 〈Φ, σ〉 −Θ for Pf.
output: true if the input is consistent, false, otherwise.
for 〈∇1

l ]∇2
l , θl〉 ∈ Θ do

if δ = matching(Φc,X , X1σ ≈? X1θl, · · · , Xnσ ≈? Xnθl)
then

if dom(Perm(〈(∇1
l ]∇2

l )δ〉nf|X)) ⊆ dom(Perm(Φc,X |X)), for all X ∈ Pf
then
return false and stop

end if
end if

end for
return true

A solution for a disunification problem Pf will be a pair 〈Φ, σ〉 that satisfies the conjunction
of constraints in Ef, and the conjunction of the constraints in Df. Formally,

Definition 3.4. Let Pf = 〈Pr || p1 6
f≈
?

α q1, . . . , pm 6
f≈
?

α qm}〉 be a nominal disunification problem.
A solution to Pf is a pair 〈∆, λ〉 of a context ∆ and a substitution λ satisfying the following
conditions:

1. 〈∆, λ〉 is a solution for Pr of Pf;

2. 〈∆, λ〉 satisfies the disequational part Df of Pf, that is, for all grounding substitution δ:

∆ 6` p1λδ
f≈α q1λδ ∧ . . . ∧ pnλδ

f≈α qnλδ.

Definition 3.5. We call a set S of pairs with exceptions for Pf a complete representation of
the solutions of the constraint problem Pf iff S satisfies the following conditions:

1. if 〈Φ, σ〉 −Θ ≤ 〈∆, λ〉 for some 〈Φ, σ〉 −Θ in S, then 〈∆, λ〉 solves Pf;

2. if 〈∆, λ〉 solves Pf, then it is an instance of some 〈Φ, σ〉 −Θ in S;

1The normal form of the instance (∇1
l ]∇2

l )δ of the context ∇1
l ]∇2

l w.r.t. the rules in unifyf

5
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3. 〈Φ, σ〉 −Θ is consistent for all 〈Φ, σ〉 −Θ in S.

Theorem 3.1 (Representation Theorem). Let Pf = 〈Pr || Df〉 be a nominal disunification
problem. Define the family

Θ :=
⋃

pi 6
f≈

?

αqi∈Df
U(pi

f≈
?

α qi).

Then the set S = {〈Φ, σ〉 −Θ | 〈Φ, σ〉 ∈ U(Pr) and Θ 6≤ 〈Φ, σ〉} is a complete representation of
solutions for the problem Pf.

Algorithm 2: Construction of a complete representation of solutions

input: A problem Pf = 〈Pr || Df〉.
output: A finite set S of pair pairs with exceptions (possibly empty).
let 〈Φ, σ〉 := unifyf(Pr)
let

Θ :=
⋃

pi 6
f≈

?

αqi∈Df

{〈∇1
i ]∇2

i , θi〉 = unifyf(pi
f≈

?

α qi)}

if consistent(〈Φ, σ〉 −Θ) then
return 〈Φ, σ〉 −Θ
else return ∅
end if

Example 3.2. Let P ′f = 〈 {(a c1) f? Y, (c1 c2) f? Y,X
f≈

?

α (a b) · Y }︸ ︷︷ ︸
Pr

|| [a]X 6f≈
?

α [b]Y 〉. Applying

Algorithm 2 one has:

• unifyf(Pr) = 〈{(a c1) f Y, (c1 c2) f Y }, [X 7→ (a b) · Y ]〉 = 〈Φ, σ〉, and

• Θ = {〈{(a c′1) f Y, (c′1 c′2) f Y }︸ ︷︷ ︸
∇

, [X 7→ (a b) · Y ]︸ ︷︷ ︸
θ

〉} = unifyf([a]X
f≈

?

α [b]Y ) where c′1 and c′2 are

new names.

Inconsistency of 〈Φ, σ〉 −Θ follows from Algorithm 1:

• Φc,X = Φc
′
1,c
′
2,X,Y = Φ ∪ {(c′1 c′2)fX, (c′1 c′2)f Y }.

• id = matching(Φc
′
1,c
′
2,X,Y , Xσ ≈? Xθ, Y σ ≈? Y θ) and

• dom(perm(〈∇id〉nf|Y )) = {c′1, c′2, a} ⊆ dom(perm(Φc
′
1,c
′
2,X,Y )|Y ) = {a, c1, c2, c′1, c′2}.

• dom(perm(〈∇id〉nf|X)) = ∅ ⊆ dom(perm(Φc
′
1,c
′
2,X,Y )|X) = {c′1, c′2}.

Therefore, S = ∅ and there is no solution for Pf.

4 Conclusion and Future Work

This work used the fixed-point relation, intrinsic to the definition of the freshness relation,
in order to extend the syntax concepts already defined in the usual nominal disunification.
The fixed-point approach proved to be useful for dealing with equational theories that involve
commutativity. For this reason, in future work, we intend to finalise the semantic analysis of our
extension and take advantage of its finite representation of solutions to investigate disunification
problems involving equational theories.
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Abstract

Nominal unification was introduced by Urban, Pitts, and Gabbay and is an extension
of first-order unification by higher-order constructs, where alpha-equality is used. The ex-
tension with atom-variables improves expressivity and applicability of nominal unification.

Anti-unification is the task of generalizing a set of expressions in the most specific way.
It was extended to the nominal framework by Baumgarter, Kutsia, Levy und Villaret,
who defined an algorithm solving the nominal anti-unification problem, which runs in
polynomial time. Unfortunately the type of the set of solutions in nominal anti-unification
(with explicit atoms) is infinitary, since every solution set can be strictly refined by adding
a constraint a#X where a is a fresh atom without changing the other properties.

We use atom-variables instead of explicit atoms in our formulations, which avoids the
infinitary property of solutions sets. Our formulation is strictly more general in several
aspects: One aspect is that atom-variables are only names for atoms, and an extension is
if it is permitted that different atom-variables are instantiated with identical atoms. These
freedom in the formulation increases its application potential. We adapt their solution
algorithm to atom-variables. There is a price to pay in the general case: checking freshness
constraints and other logical questions of freshness constraints will require exponential
time, hence it will be more complex as in the previous approach. Since it is work-in-
progress, our working hypothesis is that the algorithm can be shown to be sound and
complete and unitary in the case where atom-variables are names, or if the generalization
variables are linear in the generalizations. There are good chances that subcases have
polynomial complexity. In the general case the algorithm is presumably finitary but the
complexity is strictly higher.

– work in progress –

1 Introduction

The work in [10] presents a nominal unification algorithm to unify abstract and higher-order
expressions of a ground language defined by e ::= a | λa.e | f(a1, . . . , an) where a represents
atoms (i.e. names), e expressions, λ is the usual lambda abstraction, and f(a1, . . . , an) permits
to form terms for function symbols in a given signature. For example, applications (e e) in a
higher-order language are represented using a binary function symbol. The abstract language
also has unification variables (or expression variables X), where expressions can be substituted.
The language for solutions has in addition permutations of ground atoms, and two extra terms
in the grammar for e: X, and π·e. Solutions in this formalism are substitution together with
a set of constraints. Nominal unification solves equations w.r.t. α-equivalence on the ground
language. The introduction of permutations is, however, not only technical, but really adds to
the power of the method. The main reason is that e1 ∼α e2 ⇔ π·e1 ∼α π·e2, and that arguing
and computing with permutations is smoother than arguing and computing with renamings.
Nominal unification in its basic form is unitary and a polynomial (i.e.quadratic) algorithm is
known for computing a unifier as well as for deciding nominal unifiability [10, 7, 4].
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Anti-unification is the task, given a set of expressions, to find a most specific generalization
of all the expressions in this set. The paper of Kutsia et. al. [6] investigates an anti-unification
algorithm for (non-nominal) unranked terms and hedges, and later Baumgartner et. al. [2]
built upon this by extending it to nominal terms. They constructed a nominal anti-unification
algorithm that computes a finite set of least general generalizations (lgg) in polynomial time,
however, as they argued, it is not possible to compute a single least general one. It has appli-
cations in the analysis of programs, such as finding similar expressions and clones [1, 5, 8].

In the first-order version, anti-unification simply looks for the largest common term structure
and also takes care of equal variables. The problem can be solved in polynomial time and
produces a unique solution.

A problem related to nominal anti-unification is anti-unification for higher-order pattern,
which is unitary and where a linear time algorithm exists [3].

In the application to nominal terms, the syntax of the terms is more powerful, which means
that the syntax of the generalizations is more powerful, which has to be taken into account by the
search for a most specific generalization. This means freshness constraints and permutations,
which are part of the syntax of nominal terms, also may appear in generalizations, which
increases the representative power of this approach.

The example in [2] on infinitary nominal anti-unification is as follows: It simply says that
for f(a1) and g(a2) the generalisation (∅, X) is appropriate, where the pair consists of a set
of freshness constraints and the variable X as generalization. However, there is a a strictly
decreasing chain (∅, X), ({a3#X}, X),({a3#X, a4#X}, X), . . . which are also generalizations,
for an infinite set of atoms {a3, a4, . . .}. Somehow, the names a3, a4, . . . are irrelevant for the
problem, but provide an argument that a complete set of least general generalizations is in
general infinite. Restricting the set of available atoms to a finite set as in [2] results in nice
properties of the algorithm. Although it may suffice in practice, it is not satisfactory. We show
that atom-variables-as-names solve this problem by showing that infinitely descending general-
isations are avoided, while keeping the good properties of the algorithm in [2], see Proposition
2.2.

Our approach is to add atom-variables, as in [9] and formulate the anti-unification problem
in this language. Atoms are only used in the semantics, whereas in the expression language,
only atom-variables are used.

In our approach we permit atom-variables A1, A2, . . . (which are not fixed). If we try
to simulate the chain in the example above, the result would be (∅, X), ({A3#X}, X),
({A3#X,A4#X}, X), plus constraints like A3#A4 to make the instances different. However,
the set of instances is no longer a strictly decreasing chain, since every single instance is finite
and the set of all instances does not change if the constraints grow longer. Hence this is no longer
an example for a properly decreasing chain of generalizations. Our working hypothesis is that
there is no counterexample at all, and there are always finite complete sets of generalizations.

2 Preparations for the Algorithm

The ground language NLa is s ::= a | f(s1, . . . , sn) | λa.s, where a is a nonterminal for atoms
in an infinite set of atoms, f is a function symbol in the function signature, where we assume
that there is at least one (say c) of arity zero and one of arity 2. For example we use pairing as
a function symbol, and an application in the lambda calculus can be represented using a binary
function symbol app. Alpha-equivalence ∼ is defined on NLa as usual.
The grammar for the expression language NLA of expressions s and permutations π is as follows:
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• π ::= ∅ | (π1·A1 π2·A2)·π
• s ::= π·A | π·X | f(s1, . . . , sn) | λπ·A.s,

where A is a nonterminal for atom-variables, X is a nonterminal for variables (for unification).
Note that expressions fro NLA do not contain atoms. We use the usual conventions for dealing
with permutations and so-called suspensions, for example to move permutations inside terms
and viewing ∅·s as the same term as s. We also use the convention to replace πcdotA#s immedi-
ately by A#π−1·s and then to move the permutation inside the expression. A single component
(π1·A1 π2·A2 of a permutation is also called a swapping. The notation W is sometimes used as
an abbreviation for a suspension of atom-variables.

We also use generalized freshness constraints A#s and constraint sets (of freshness con-
straints). A constraint A#s is valid for (“ground”) σ, if Aσ does not occur free in sσ.

Definition 2.1. The representation of generalizations are terms-in-context (∇, s) where ∇ is
a constraint set and s is an NLA-expression.
The semantics of (∇, s) is the set of ground instances of s that satisfy ∇, i.e., J(∇, s)K :=
{[r]∼ | r is ground and ∃σ : sσ ∼ r ∧∇σ holds }.
A term-in-context (∇, t) is more general than another term-in-context (∇′, t′), if J(∇′, t′)K ⊆
J(∇, t)K, where we assume that the set consists of equivalence classes modulo ∼.

The goal is to find a least generalization of sets of terms-in-context. Thus the general-
ization problem for two terms-in-context (∇1, t1) and (∇2, t2) is to find another (∇3, t3) such
that J(∇1, t1)K ⊂ J(∇3, t3)K and J(∇2, t2)K ⊂ J(∇3, t3)K, and J(∇3, t3)K is as small as possible,
where the best case is that it is the smallest one. For example ({A1#A2}, f(A1, λA2.A2)
and (∅, f(c, λA3.A3), where c is a unary symbol in the signature, have as generalization
(∅, f(X,λA2.A2)), since the constraint is irrelevant in the final expression f(X,λA2.A2).

Notations and Conventions Head(s) is defined as f if s = f(. . .), and λ if s = λa.s′; if s is
a suspension π·X, then X; and if s is π·A then A. The notation W means a suspension of an
atom variable.

2.1 Atom-Variables as Names

We investigate solutions of the form (X,∇) and show that extending ∇ by entries of the form
A#X for fresh atom-variables does mot change the set of instances.

Proposition 2.2. Let X be a variable, ∇ be a constraint set, where we assume the atom-
variables-as-names regime: for every pair A,B of atom-variables that is used, also A#B is in
∇. Let A′ be a semantically fresh atom-variable, and let ∇′ = ∇ ∪ ∇′′, where ∇′′ consists of
pairs A′#Ai for all atom-variables Ai occurring in ∇, and a constraint A′#X. This implies
all used different atom-variables have different instances. Then J(X,∇)K = J(X,∇′)K.

Proof. The only necessary argument is that there is some atom a not contained in σ(X) nor in
any other expression in ∇. Then we can change σ to σ′, if necessary, to σ′(A′) = a. Then the
constraint is satisfied and the expression is also in J(X,∇′)K.

3 The Algorithm AtomAntiUnification and its Rules

3.1 The Nominal Generalization Algorithm

The data structure of the algorithm AtomAntiUnification is a tuple (Γ,M,∇, L) where
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(Decomposition):

{X:f(s1, . . . , sn) , f(t1, . . . , tn)} ·∪Γ,M,∇, L
Γ ·∪{X1:s1 , t1, . . . , Xn:sn , tn},M,∇, L ∪ {X 7→ f(X1, . . . , Xn)}

where Xi are fresh
variables

(Abstraction):

{X:λW1.s , λW2.t} ·∪Γ,M,∇, L}
Γ ·∪{Y :(W1 B)·s , (W2 B)·t},M,
∇′, L ∪ {X 7→ λB.Y }

where Y is a fresh variable, and B is a seman-
tically fresh atom-variable, represented in ∇′

(Suspension):

{X:W1 ,W2} ·∪Γ,M,∇, L ∇ �W1 = W2

Γ,M,∇, L ∪ {X 7→W1}

(Merging):

Γ, {X:s1 , t1, Y :s2 , t2} ·∪M,∇, L EQVM ({(s1, t1) � (s2, t2)},∇) = π

Γ,M ∪ {X:s1 , t1},∇, L ∪ {Y 7→ π·X}
(Merging-Sym):

Γ, {X:s1 , t1, Y :s2 , t2} ·∪M,∇, L EQVM ({(s1, t1) � (t2, s2)}, ∅,∇) = π

Γ,M ∪ {X:s1 , t1},∇, L ∪ {Y 7→ π·X}
(General):

{X:s , t} ·∪Γ,M,∇, L
Γ,M ∪ {X:s , t},∇, L

If Head(s) 6= Head(t) and if s and t are not both suspen-
sions of atom-variables.

(GeneralAB):

{X:W1 ,W2} ·∪Γ,M,∇, L ∇ 6�W1 = W2

Γ,M ∪ {A:W1 ,W2},∇, L ∪ {X 7→ A} A is a fresh atom-variable.

Figure 1: Rules of the algorithm AtomAntiUnification

• Γ is a set of generalization triples of the form X:s , t, where X is a (generalization-)
variable, and s, t are NLA-expressions.

• M is a set of solved generalization triples.

• ∇ is a set of freshness constraints.

• L is a substitution represented as a list of bindings.

The output is a term-in-context generated from the generated substitution, i.e. the output
is (X ◦ L,∇), where X is the initial generalization variable, L is the computed substitution,
and ∇ the final constraint.

We say B is a semantically fresh atom-variable, if it is created and constraints A#A′ for
different A,A′ are added to ∇ that make it semantically different from all already used atom-
variables.

The rules of the algorithm AtomAntiUnification are in Fig. 1.
The rules are applied until the set Γ is empty, and the merging rules (Merging) and (Merging-
Sym) are no longer applicable.
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Γ ·∪{e � e},Π,∇
Γ,Π,∇

Γ ·∪{(f s1 . . . sn) � (f s′1 . . . s
′
n)},Π,∇

Γ ∪ {s1 � s′1, . . . , sn � s′n},Π,∇
Γ ·∪{π1·X � π2·X},Π,∇ ∇ � π1 ≈ π2

Γ,Π,∇
Γ ·∪{λW1.s � λW2.t},Π,∇ ∇ �W1#λW2.t

Γ ∪ {(W1 W2)·s � t},Π,∇
Γ ·∪{W1 �W2},Π,∇

Γ, {W1 7→W2} ∪Π,∇
∅,Π,∇ ∇ � (Π is a bijection)

success: the result of the call to EQVM is the computed
permutation π (see Def. 3.1)

Figure 2: Rules of the permutation matching algorithm EQVMatch

3.2 Equivariance Algorithm

The merge-rule as in [2], which is an equivariance problem, will be treated similarly, however,
slightly generalized to atom-variables and nested permutation expression. We use a matching-
like rule-based algorithm that finally is able to produce a permutation for the merge rule, if
there is one at all. Instead of fixing the derivation ∇ ` . . ., we will use the semantic variant
∇ � . . . to be as general as possible, which will leave some open space for optimizations.

Definition 3.1. The rules of the nondeterministic algorithm EQVMatch are in Fig. 2. The
initial triple has ∅ as Π, i.e. the start triple is (Γ, ∅,∇), where Γ and ∇ are delivered in the call
to this algorithm. The rules are to be applied as long as possible. If the state is reached where
Γ is empty, and ∇ implies that the mappings in Π do not collide and form an injection, then
the algorithm is successful, otherwise there is no permutation returned.
In the success case a permutation is returned after the following processing.
We exploit the guarantee by ∇ that the mappings in Π are injective. First perform the following
actions on Π until no longer possible:

• If there are two pairs (W1 7→W2), (W ′1 7→W ′2) in Π, and ∇ �W1 = W ′1, then remove the
mapping (W ′1 7→W ′2) from Π.

• If there are two pairs (W1 7→W2), (W ′1 7→W ′2) in Π, and ∇ �W2 = W ′2, then remove the
mapping (W ′1 7→W ′2) from Π. (Note that this computation is redundant).

• If there is a pair (W1 7→W2), and ∇ �W1 = W2, then remove the mapping from Π.

Then group the mappings such that a permutation can be formed. For example, if one group is
a sequential subset of mappings like a 7→ b, b 7→ c, c 7→ d and there is no mapping for d (or the
mapping d 7→ a), then generate the permutation π1 := (a b)·(b c)·(c d). Note that we assume
application from the left to atoms. For several groups generate a permutation for each group,
and then compose them to a single permutation π, which is the result of the EQVMatch.

An algorithm for checking ∇ � . . . can be done by a brute-force algorithm checking all cases
of potential instantiations of atom variables with atoms (from a finite set at most as large as
the set of atom variables). An This can be performed in exponential time since it is sufficient
to check all possibilities of equality and disequality of atom-variables.

Example 3.2. An example demonstrating the use of ∇ and the treatment of bindings is as
follows. Let the expressions be λA1.A2 and λA2.A1. The generalization is λA.X or λA.A
depending on ∇. The computation is roughly as follows:
X:λA1.A2 , λA2.A1 as input. After an application of (Abstraction) we obtain: Y :A2 , A1 and
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∇′ = ∇∪{B#A1, B#A2}, and X 7→ λB.Y , (and using this in the application of permutation).
Now it depends on whether ∇ � A1 = A2 holds.
If ∇ � A1 = A2, then we apply (Suspension) and obtain X 7→ λB.A1. If ∇ 6� A1 = A2,
then we apply (GeneralAB) and obtain X 7→ λB.A for a fresh atom-variable A.

The algorithm AtomAntiUnification is designed such that it is correct and complete. A
proof of its properties, however, is future work.

Specialization atom-variables-as-names The restriction is that all atom-variables have dif-
ferent atoms as instances. This restriction is already mentioned in Proposition 2.2, where
it is argued that it improves the view on the framewoj and algorithms in [2]. There is no
need to change the algorithms in [2], however, the theoretical properteis can be improved:
it will be unitary in this framework.

Specialization Linear Generalization Expression In our framework, the assumption that
the only linear expressions are permitted as generalizations makes the algorithm much
simpler: the subalgorithm for detecting equivariant terms-in-context is no longer required.
The remaining rules do not need a guessing, and thus we can expect that it is unitary.

A first look at the complexity of the rule-based algorithm reveals that (Suspension) and
(GeneralAB) are problematic, since they require to compute a consequence of ∇. This
appears to be of exponential complexity. To avoid this complexity, it would be possible
to omit the (GeneralAB)-rule, and always use the (Suspension)-rule without checking the
condition. This restriction of the algorithm is expected to lead to y polynomial complexity.

General Case We believe that the algorithm is correct and complete. Since the guessing is
finite, there will be only finitely many generalization terms. So our guess is that we can
prove that generalization in the atom-variable case is finitary. The complexity of the
algorithm at a first look is simply exponential. A deeper analysis may argue for a low
complexity within the polynomial hierarchy.

4 Future Work

Proofs of properties of the generalization are in order, and perhaps adaptations of the algorithm
according to improvements. Since it is work-in-progress, our working hypotheses are: checking
freshness constraints and implications of freshness constraints will require exponential time,
and the algorithm is complete and finitary.

It would be interesting to analyse the weaker variant where the generalizations are linear
in the generalization variables. This would make the merge-rules superfluous, thus a source of
complexity of the algorithm is removed which may result in a good trade-off between expressive-
ness and complexity. Further ignoring the exactness of the rules (Suspension) and (GeneralAB)
may lead to a polynomial complexity.

If the algorithm is applied in a programming language environment, it would be appropriate
to include constraints that reflect the so-called variable-assumption: that bound variables in
program definitions are different, and that free variables are different from bound variables.
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Abstract

In cryptography, modes of operation are used to encrypt plaintext messages of multiple
blocks. The standard notion of computational security for modes of operation is IND$-
CPA security. One can use symbolic methods to reason about the security of modes
of operation. In this paper, we introduce a sufficient condition (called the uniqueness
property) for symbolic security of modes of operation. We present an algorithm for checking
the uniqueness property. The algorithm can be used to automatically synthesize secure
cryptographic modes of operation.

1 Introduction

Cryptographic modes of operation are ways to encrypt plaintext messages of multiple blocks
using block ciphers. The standard notion of computational security is IND$-CPA security [5].
To check the IND$-CPA security of a mode of operation, an adversary interacts with some
encryption oracle by sending plaintext blocks to the encryption oracle and receiving ciphertext
blocks back from the encryption oracle. Multiple interactions involving multiple messages can
be interleaved. A mode of operation is IND$-CPA secure if and only if the adversary cannot
distinguish between the ciphertext blocks and random bits of the same length. There has been
a recent trend of automatic verification and synthesis of secure cryptosystems [1, 2].

In [4], Meadows establishes the connection between the computational world and the sym-
bolic world. It is shown that cryptographic operations (e.g. block cipher) can be modelled
as function symbols, message blocks can be modelled as terms, properties of operations (e.g.
exclusive-or) can be modelled as an equational theory, etc. A notion of symbolic security is
introduced, which aims to connect computational security and symbolic security.

In this paper, we propose a sufficient condition for symbolic security, which is called the
uniqueness property. We also propose a sound and terminating algorithm for checking the
uniqueness property. Since the problem of checking symbolic security is undecidable in general
[3], our algorithm is incomplete. But it can handle popular modes of operation including Cipher
Feedback Mode, etc. Our proposed algorithm can be used to automatically synthesize secure
cryptographic modes of operation.

The rest of this paper is organized as follows. In Section 2, we introduce some notation and
describe the notion of symbolic security, which is introduced in [4]. In Section 3, we introduce
the uniqueness property, and show that it implies symbolic security. In Section 4, we propose
an algorithm for checking the uniqueness property. We conclude and discuss future work in
Section 5.

∗The work is supported by NRL under contract N00173-19-1-G012.
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2 Preliminaries

In [4], a first-order signature Σ = {f/1,⊕/2, 0/0} is used to model modes of operation, where
f models block cipher, 0 models message blocks of all 0’s. N is a set of constants modelling
blocks of random bits (e.g. initialization vectors). X is a set of variables containing plaintext
variables modelling plaintext blocks and ciphertext variables modelling ciphertext blocks. Terms
over T (Σ ∪ N,X) model ciphertext blocks, (possibly) in terms of other plaintext blocks and
ciphertext blocks.

More precisely, let M be a mode of operation, which is defined inductively as Cp,i =
tind, Cp,0 = t0, where tind, t0 ∈ T (Σ ∪ N,X). A symbolic history H is a sequence of terms
exchanged between the adversary and the encryption oracle. A symbolic history can be an
interleaving of multiple sessions, each of which is used to encrypt a single message of some
plaintext blocks. We use Ci to denote the ith ciphertext block sent by the encryption oracle in
H1. We call Cp,i a ciphertext variable, and use it to denote the ith ciphertext block from the
pth session. We call xp,i a plaintext variable, and use it to denote the ith plaintext block from
the pth session. We use rp to denote the initialization vector of the pth session. If we unfold
Cp,i, we get tind. We assume that tind is a term of the form f(t1)⊕ . . .⊕ f(tm)⊕ xp,i. We use
top-f -terms(Cp,i) to denote {f(t1), . . . , f(tm)}. Each f(tj) (1 ≤ j ≤ m) is called an f -rooted
summand of Cp,i. We define sizef (Cp,i) to be the number of f -rooted summands of Cp,i.

In [4], the notions of computable substitution and symbolic security are introduced. Given a
symbolic history H, a substitution σ is a computable substitution of H if σ maps each variable
x to the exclusive-or of some (0 or more) terms that appear in H before x. A mode of operation
is symbolically secure if it does not admit any symbolic history H together with a computable
substitution σ of H s.t. there exists a subsequence Ci1 , . . . , Cik in H s.t. (Ci1⊕. . .⊕Cik)σ =⊕ 0.

Example 1. Consider the following Cipher Feedback Mode, where

Cp,i = f(Cp,i−1)⊕ xp,i
Cp,0 = rp, where rp is a constant.

H = r1, r2, x1,1, f(r1)⊕x1,1, x2,1, f(r2)⊕x2,1, x1,2, f(f(r1)⊕x1,1)⊕x1,2 is a possible symbolic
history of Cipher Feedback Mode, which is the interleaving of two sessions. σ = {x1,1 7→
0, x2,1 7→ f(r1), x1,2 7→ f(r1)⊕ r2} is a computable substitution of H.

Definition 1. Given a term t, C V ar(t) denotes the set of ciphertext variables in t. More
formally,

� C V ar(Cp,i) = {Cp,i}, if Cp,i is a ciphertext variable.

� C V ar(xp,i) = ∅, if xp,i is a plaintext variable.

� C V ar(f(t)) = C V ar(t).

� C V ar(t1 ⊕ t2) = C V ar(t1) ∪ C V ar(t2).

3 Uniqueness Property

The following is a definition for the uniqueness property, which is a sufficient condition for
symbolic security.

1Ci 6∈ T (Σ ∪N,X), where i = 1, 2, 3, . . .
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Definition 2. Let M be a mode of operation. Consider any symbolic history H of M and
any computable substitution σ of H. Let Cp,i and Cq,j be any two ciphertext variables in H.
M satisfies the uniqueness property if for any two distinct terms t1, t2 ∈ top-f -terms(Cp,i) ∪
top-f -terms(Cq,j), t1σ 6=⊕ t2σ.

The following lemma states that the uniqueness property implies symbolic security.

Lemma 1. Let M be any mode of operation. If M satisfies the uniqueness property, then M
is symbolically secure.

Proof. Let M be a mode of operation. Consider any symbolic history H of M and any
computable substitution σ. Let S : Cp1,i1 , . . . , Cpm,im be a subsequence of H. By the
uniqueness property,

∑m
k=1⊕Cpk,ikσ = top-f -terms(Cpm,im)σ ⊕ t for some t. Therefore,∑m

k=1⊕Cpk,ikσ 6= 0.

4 An Algorithm for Checking the Uniqueness Property

In this section, we propose an algorithm for checking the uniqueness property. Given a mode of
operation M , we take an arbitrary symbolic history H of M and any two ciphertext variables
Cp,i and Cq,j in H. We then consider two different f -rooted summands tm and tm′ of Cp,i and
Cq,j . We assume that tm and tm′ are the first (earliest) pair of terms in H that are unifiable
modulo xor under some computable substitution, and try to derive contradiction. We start

from an initial set of equations {tm ⊕ tm′ ?
= 0}, and keep processing the equations using the

inference rules in Ii,j,tm,tm′ (Figure 1). Note that Ii,j,tm,tm′ is parameterized by i, j, tm and

tm′, which are referred to by ElimC and PickC . We use Ii,j,tm,tm′({tm⊕tm′ ?
= 0}) to represent

the final result of applying Ii,j,tm,tm′ to {tm⊕ tm′ ?
= 0}. We maintain the following invariant:

If we get a set of equations Γ at any step , tm and tm′ are unifiable modulo xor under some
computable substitution, then at least one of the equations in Γ must hold. Intuitively, each
equation in Γ represents a possibility that tm and tm′ are unifiable modulo xor under some
computable substitution. And Γ represents the set of all possibilities. Our goal is to derive a
contradiction, which is to make Γ an empty set.

Algorithm 1 Checking Security of Modes of Operation

Input: a recursive description of some mode of operation M .

Γ = top-f -terms(Cp,i) ∪ top-f -terms(Cq,j)
for each pair of distinct terms tm and tm′ in Γ do

if Ii,j,tm,tm′({tm⊕ tm′ ?
= 0}) 6= ∅ then

return “unknown”
end if

end for
return “secure”

The Elimf rule allows us to remove the possibility that an f -rooted term is 0. The ElimC

rule allows us to remove the possibility that we somehow find an earlier pair of unifiable terms,
since we assumed that tm and tm′ are the earliest pair of unifiable terms. If we try to unify
Cp,m and a term containing Cp,m, according to the Occurs check rule, that is impossible. If
the xor of some f -rooted terms is 0, the Pickf rule nondeterministically picks one of them and
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Γ ∪ {f(t)
?
= 0}

Γ
Elimf

Γ ∪ {Cp,m ⊕ Cq,n
?
= 0}

Γ
ElimC

where i 6= j implies m 6= n.

Γ ∪ {Cp,m ⊕ f(t)
?
= 0}

Γ
Occurs check

where Cp,m is a subterm of t.

Γ ∪ {f(t1)⊕ . . .⊕ f(tn)
?
= 0}

Γ ∪ {tk ⊕ t1 ?
= 0} ∪ . . . {tk ⊕ tk−1 ?

= 0} ∪ {tk ⊕ tk+1
?
= 0} ∪ . . . ∪ {tk ⊕ tn ?

= 0}
Pickf

where k is chosen nondeterministically between 1 and n.

Γ ∪ {Cp,m ⊕ f(t1)⊕ . . .⊕ f(tn)
?
= 0}

Γ ∪ {t′u
?
= t1} ∪ . . . {t′u

?
= tn}

PickC

where (1) f(t′u) is an f -rooted summand of Cp,m. (2) size(Cp,m) ≤ n. (3) Cp,m ∈ C V ar(tm) ∪
C V ar(tm′).

Γ ∪ {Cp,m ⊕ f(t1)⊕ . . .⊕ f(tn)
?
= 0}

Γ
Pickfail

where size(Cp,m) > n.

Figure 1: Inference Rules Ii,j,tm,tm′

lists all the possibilities that it can cancel with some other f -rooted term. The PickC rule
first unfolds Cp,m, then picks an f -rooted summand of Cp,m and cancels it with some f -rooted
term. Note that the PickC rule rules out the possibility that two f -rooted summands of Cp,m

can cancel with each other. If the number of f -rooted summands of Cp,m is greater than the
number of f -rooted terms in an equation, the Pickfail rule applies.

The following is an example of using Algorithm 1 to check security of modes of operation.

Example 2. Consider the following mode of operation, where:

Cp,i = f(Cp,i−1)⊕ f(f(Cp,i−1))⊕ xp,i
Cp,0 = rp.

� According to Algorithm 1, Γ = {f(Cp,i−1), f(f(Cp,i−1)), f(Cq,j−1), f(f(Cq,j−1))}.
There are 6 cases to consider.

– Case 1: Apply the inference system Ii,j,f(Cp,i−1),f(Cq,j−1) to {f(Cp,i−1)⊕f(Cq,j−1)
?
=

0}

{f(Cp,i−1)⊕ f(Cq,j−1)
?
= 0}

{Cp,i−1 ⊕ Cq,j−1
?
= 0}

Pickf

4
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{Cp,i−1 ⊕ Cq,j−1
?
= 0}

∅ ElimC

– Case 2: Apply the inference system Ii,j,f(f(Cp,i−1)),f(f(Cq,j−1)) to

{f(f(Cp,i−1))⊕ f(f(Cq,j−1))
?
= 0}

{f(f(Cp,i−1))⊕ f(f(Cq,j−1))
?
= 0}

{f(Cp,i−1)⊕ f(Cq,j−1)
?
= 0}

Pickf

{f(Cp,i−1)⊕ f(Cq,j−1)
?
= 0}

{Cp,i−1 ⊕ Cq,j−1
?
= 0}

Pickf

{Cp,i−1 ⊕ Cq,j−1
?
= 0}

∅ ElimC

– Case 3: Apply the inference system Ii,j,f(Cp,i−1),f(f(Cp,i−1)) to

{f(Cp,i−1)⊕ f(f(Cp,i−1))
?
= 0}

{f(Cp,i−1)⊕ f(f(Cp,i−1))
?
= 0}

{Cp,i−1 ⊕ f(Cp,i−1)
?
= 0}

Pickf

{Cp,i−1 ⊕ f(Cp,i−1)
?
= 0}

∅ Occurs check

– Case 4: Apply the inference system Ii,j,f(Cq,j−1),f(f(Cq,j−1)) to

{f(Cq,j−1)⊕ f(f(Cq,j−1))
?
= 0}

{f(Cq,j−1)⊕ f(f(Cq,j−1))
?
= 0}

{Cq,j−1 ⊕ f(Cq,j−1)
?
= 0}

Pickf

{Cq,j−1 ⊕ f(Cq,j−1)
?
= 0}

∅ Occurs check

– Case 5: Apply the inference system Ii,j,f(Cp,i−1),f(f(Cq,j−1)) to

{f(Cp,i−1)⊕ f(f(Cq,j−1))
?
= 0}

{f(Cp,i−1)⊕ f(f(Cq,j−1))
?
= 0}

{Cp,i−1 ⊕ f(Cq,j−1)
?
= 0}

Pickf

{Cp,i−1 ⊕ f(Cq,j−1)
?
= 0}

∅ Pickfail
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– Case 6: Apply the inference system Ii,j,f(f(Cp,i−1)),f(Cq,j−1) to

{f(f(Cp,i−1))⊕ f(Cq,j−1)
?
= 0}

{f(Cq,j−1)⊕ f(f(Cp,i−1))
?
= 0}

{Cq,j−1 ⊕ f(Cp,i−1)
?
= 0}

Pickf

{Cq,j−1 ⊕ f(Cp,i−1)
?
= 0}

∅ Pickfail

� Algorithm 1 returns “secure”.

Theorem 1 (Soundness). For any mode of operation M , if Algorithm 1 returns “secure”, then
M is symbolically secure.

Theorem 2 (Termination). For any mode of operation M , Algorithm 1 always terminates.

5 Conclusions and Future Work

There has been a recent trend of automatic verification and synthesis of secure cryptosystems.
In this paper, we introduce a sufficient condition (called “uniqueness property”) for symbolic
security and present an algorithm for checking the uniqueness property. We plan to apply this
algorithm to automatically synthesize secure cryptographic modes of operation. The idea is to
generate candidate modes of operation randomly and use our algorithm to filter out those that
cannot be proved to be secure.

References

[1] Viet Tung Hoang, Jonathan Katz, and Alex J. Malozemoff. Automated analysis and synthesis
of authenticated encryption schemes. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 84–95, 2015.

[2] Alex J. Malozemoff, Jonathan Katz, and Matthew D. Green. Automated analysis and synthesis of
block-cipher modes of operation. In IEEE CSF, pages 140–152, 2014.

[3] Andrew M. Marshall, Catherine Meadows, Paliath Narendran, Veena Ravishankar, and Brandon
Rozek. Algorithmic problems in synthesized cryptosystems. In 34th International Workshop on
Unification, 2020.

[4] Catherine Meadows. Symbolic security criteria for blockwise adaptive secure modes of encryption.
IACR Cryptol. ePrint Arch., 2020:794, 2020.

[5] Phillip Rogaway. Nonce-based symmetric encryption. In 11th International Workshop, pages 348–
359, 2004.

6



Formal Analysis of Symbolic Authenticity∗

Hai Lin and Christopher Lynch

Clarkson University, Potsdam, NY, U.S.A
hlin@clarkson.edu clynch@clarkson.edu

Abstract

Authenticated encryption schemes are ways of encrypting messages which simultane-
ously assure the privacy and authenticity of data. Designing authenticated encryption
schemes can be error-prone. In this paper, we are interested in the authenticity property
of authenticated encryption schemes. We introduce the notion of symbolic authenticity,
and present a decision procedure for verifying symbolic authenticity. This technique can
be used to automatically synthesize authenticated encryption schemes.

1 Introduction

Authenticated encryption schemes (e.g. OCB [6], XCBC [1], etc) are ways of encrypting mes-
sages which simultaneously assure the privacy and authenticity of data. It is a nontrivial task
to construct authenticated encryption schemes. Automated techniques have been used to verify
and synthesize authenticated encryption schemes [2].

In this paper, we are interested in the authenticity property. Roughly speaking, an au-
thenticated encryption scheme satisfies authenticity if an adversary cannot forge any new valid
ciphertext message after observing as many ciphertext messages as he wants. Motivated by the
original work in [4], we propose to reason about authenticity symbolically. We introduce the
notion of symbolic authenticity, and present a decision procedure for checking symbolic authen-
ticity. The idea is that we can use function symbols to model cryptographic operations (e.g.
tweakable block cipher, exclusive-or, etc.). We can use terms to model message blocks, and use
an equational theory to capture the properties of cryptographic operations and the properties
that valid ciphertext messages must satisfy. We reduce the problem of checking symbolic au-
thenticity to a new unification problem modulo the equational theory. The difficulty is that the
equational theory can have an unbounded number of equations.

The rest of this paper is organized as follows. In Section 2, we recall the basics of authen-
ticated encryption. In Section 3, we introduce the notion of symbolic authenticity. We then
present an algorithm for checking symbolic authenticity in Section 4. We conclude and discuss
future work in Section 5.

2 Preliminaries

In cryptography, a tweakable block cipher [3] on n-bit strings with tweak space T and key space
K is a map E: K × T × {0, 1}n → {0, 1}n s.t. EK(T, ·) is a permutation on {0, 1}n for any
K ∈ K and T ∈ T . Roughly speaking, each combination of a key and a tweak leads to a totally
independent permutation. In this paper, we consider some tweakable block cipher with a fixed
key K, which is not known to the adversary.

An authenticated encryption scheme Π is a tuple (E ,D,V) with key space K, message space
M, tweak space T and tag space G, where E is an encryption algorithm, D is a decryption

∗The work is supported by NRL under contract N00173-19-1-G012.
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Figure 1: An Authenticated Encryption Scheme Π1

algorithm and V is a verification equation, which checks authenticity. E uses some tweakable
block cipher, and maps (K,Tk,M) ∈ K×T ×M to a ciphertext (Tk,C, Tg) ∈ T ×{0, 1}∗×G.
A ciphertext (C, Tg) is valid if and only if VK(Tk,C, Tg) returns true. D maps (K,Tk,C, Tg) ∈
K × T × {0, 1}∗ × G to either a message M ∈ M if (C, Tg) is valid or an error otherwise. In
this paper, we only consider authenticated encryption schemes, which handle messages of fixed
length.

We consider a first-order signature Σ = {e/2, d/2, n/1,⊕/2, 0/0}. where e models encryption
using tweakable block cipher: e(t1, t2) is the encryption of t2 using tweak t1. dmodels decryption
using tweakable block cipher: d(t1, t2) is the decryption of t2 using tweak t1. In tweakable block
cipher, each tweak can only be used to process a single block. If t is the tweak for processing
the ith block of some message, then n(t) is the tweak for processing the i + 1th block of the
same message. We use nk(t) as a shorthand for applying n to t for k times. 0 represents a block
of all 0’s. We use X to represent a set of variables: Tk denotes some tweak, Tg denotes some
tag, and Ci denotes the ith block of some message. We use N to represent a set of constants:
tki denotes the tweak for processing the first block of the ith message, tgi denotes the tag of
the ith ciphertext message, mi,j denotes the jth block of the ith plaintext message, ci,j denotes
the jth block of the ith ciphertext message.

Example 1. Consider the authenticated encryption scheme Π1 in Figure 1. Π1 = (E ,D,V),
where
EK(Tk, (M1,M2)) := (Tk, e(Tk,M1), e(n(Tk),M2), e(n2(Tk), C1 ⊕ C2)).
VK(Tk, (C1, C2), T g) := (e(n2(Tk), C1 ⊕ C2) == Tg)

DK(Tk, (C1, C2), T g) :=

{
(d(Tk,C1), d(n(Tk), C2)) if VK(Tk, (C1, C2), T g) == True

⊥ otherwise

In order to check if an authenticated encryption satisfies authenticity, we consider a game
between an adversary A and an encryption oracle EK(·, ·). The adversary queries the encryp-
tion oracle with plaintext messages, and gets back valid ciphertext messages. The adversary
can choose plaintext messages adaptively based on previous queries. They can have as many
rounds of interaction as they want. The adversary wins the game if and only if he can forge
a new ciphertext message (Tk,C, Tg) s.t. VK(Tk,C, Tg) == True. An authenticated encryp-
tion scheme satisfies authenticity if and only if the adversary wins the game with negligible
probability.

Example 2. Consider the authenticated encryption scheme Π1 in Figure 1. Suppose that there
are two rounds of interaction between an adversary A and an encryption oracle EK(·, ·).

� Round 1: The adversary A queries the oracle with (m1,1,m1,2). EK(·, ·) replies with a
valid ciphertext message (tk1, c1,1, c1,2, tg1).

2
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� Round 2: The adversary A queries the oracle with (m2,1,m2,2). EK(·, ·) replies with a
valid ciphertext message (tk2, c2,1, c2,2, tg2).

The adversary can choose plaintext messages adaptively. For example, m2,1 can be chosen
as c1,1, m2,2 can be chosen as c1,1 ⊕ c1,2. We have the following set of equations: E⊕, E1

and E2. E⊕ captures the properties of exclusive-or. E1 captures the fact that the ciphertext
messages, which A receives, are valid. E2 captures the fact that the adversary can choose
plaintext messages adaptively.

E⊕ = {t⊕ t = 0, t⊕ 0 = t} ∪AC(⊕)
E1 = {e(n2(tk1), c1,1 ⊕ c1,2) = tg1, e(n

2(tk2), c2,1 ⊕ c2,2) = tg2}
E2 = {d(tk2, c2,1) = c1,1, d(n(tk2), c2,2) = c1,1 ⊕ c1,2}
After the above two rounds of interactions, the adversary can output a new valid ciphertext

message: (tk1, c1,1 ⊕ c1,2, 0, tg1). Therefore, Π1 does not satisfy authenticity.

3 Symbolic Authenticity

In this section, we define the notion of symbolic authenticity of authenticated encryption
schemes. We only consider authenticated encryption schemes, which handle messages of l
blocks. We reduce the problem of checking symbolic authenticity to a new unification problem.
First we formalize verification equations and AE theories w.r.t. a verification equation using
the following definitions.

Definition 1. An equation V of the form e(nk(Tk), t) = Tg is a verification equation if V
satisfies the following property:

� (Consistency) (1) For all e(s, s′) and e(t, t′) that occur in V , if s = s′, then t = t′. (2)
For all d(s, s′) and d(t, t′) that occur in V , if s = s′, then t = t′.

We use lhs(V ) to denote e(nk(Tk), t).

The “consistency” property holds since in tweakable block cipher, each tweak can only be
used to process a unique message block. We assume that, in the security game described in
Section 2, the adversary receives an unbounded number of valid ciphertext messages. We define
the following meta substitution ωl

i, which will be used throughout the rest of this paper.

ωl
i = {Tk 7→ tki, C1 7→ ci,1, C2 7→ ci,2, . . . , Cl 7→ ci,l}

We can instantiate meta-substitutions by instantiating i and l. Let γ1 and γ2 be two meta-
substitutions. γ1γ2 denotes the composition of γ1 and γ2. For example,

(1) ω2
i = {Tk 7→ tki, C1 7→ ci,1, C2 7→ ci,2}

(2) ω2
1 = {Tk 7→ tk1, C1 7→ c1,1, C2 7→ c1,2}

(3) ω2
i {C3 7→ ci,3} = {Tk 7→ tki, C1 7→ ci,1, C2 7→ ci,2, C3 7→ ci,3}

Definition 2. Let V be a verification equation. A set of ground equations EV is an AE theory
w.r.t. V if the following properties are satisfied:

� (Validity) ∀i ∈ N , V (ωl
i{Tg 7→ tgi}) ∈ EV .

� (Consistency) (1) For all e(s, s′) and e(t, t′) that occur in EV , if s = s′, then t = t′.
(2) For all d(s, s′) and d(t, t′) that occur in EV , if s = s′, then t = t′.

3
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� (Stability) No equation in EV is of the form n(t) = t′.

In Definition 2, the “Validity” property says that for all i, the ith ciphertext message
(tki, ci,1, . . . , ci,l, tgi) is valid. The “Stability” property says that the tweaks are irreducible
in EV .

Definition 3. Let V be a verification equation, EV is an AE theory w.r.t. V . Consider two
terms s.t. t1ω

l
i = t2. t1 and t2 are (⊕, EV )-unifiable under σ if

� t1σ =⊕,EV
t2

� σ is a computable substitution, meaning that each Cj can only be mapped to the exclusive-
or of some constants and variables.

σ is called a (⊕, EV )-unifier of t1 and t2. σ∗ is the most general (⊕, EV )-unifier of t1 and
t2 if for any (⊕, EV )-unifier σ of t1 and t2, there exists some substitution σ′ s.t. σ = σ∗σ′.

To produce a valid message m : (Tk,C, Tg), the adversary needs to compute some substi-
tution σ s.t. VK(Tkσ,Cσ, Tgσ) returns true. Due to the “Validity” property, ωl

i{Tg 7→ tgi}
satisfies this requirement. But (Tkωl

i, Cω
l
i, tgi) is not new, it is the ith message that the ad-

versary receives from the encryption oracle. Therefore, the adversary tries to find some other
(⊕, EV )-unifier σ′ of lhs(V ) and lhs(V )ωl

i. If the adversary succeeds, (Tkσ′, Cσ′, tgi) is a new
valid message.

Definition 4. Let S be an authenticated encryption scheme with verification equation V . Let
EV be an AE theory w.r.t. V . S is symbolically authentic if the following condition holds.

� ωl
i is the only (⊕, EV )-unifier of lhs(V ) and lhs(V )ωl

i.

4 An Algorithm for Checking Symbolic Authenticity

Let V be a verification equation, EV is an AE theory w.r.t. V . To check if two terms t1 and

t2 are (⊕, EV )-unifiable, we apply the inference system IB (Figure 2) to {t1 ?
= t2}. We use

IB(t1, t2) to denote the result, which is the most general (⊕, EV )-unifier of t1 and t2. Let S be
some authenticated encryption scheme, whose verification equation is V . Algorithm 1 checks if
S satisfies authenticity, we compute the most general (⊕, EV )-unifier of lhs(V ) and lhs(V )ωl

i,
and check if it is ωl

i. If so, S satisfies authenticity. Otherwise, S does not satisfy authenticity.
Algorithm 1 is sound, complete and terminating.

The inference rules of IB are listed in Fig. 2. The Decompose rule is standard as in syntactic
unification [5]. The Decomposen rule is an optimization rule: If we have an equation of the form

nu(s)
?
= nu(t), instead of applying the Decompose rule u times, we can apply the Decomposen

rule once. The standard V ariable Elimination rule in syntactic unification may not lead to
computable substitutions. Instead, we have the ElimC rule and the ElimTk rule, which always
lead to computable substitutions. The Split rule is the key rule in IB . The following example
illustrates the idea behind the Split rule.

Example 3. Let V be a verification equation, and EV be an AE theory w.r.t. V . Consider
the following inference step:

{C1 ⊕ e(tk1, C2)
?
= c1,1 ⊕ e(tk1, c1,2)} Split

=⇒ {C1
?
= c1,1, e(tk1, C2)

?
= e(tk1, c1,2)}

4
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Decompose

{f(s1, . . . , su)
?
= f(t1, . . . , tu)} ∪ Γ;σ =⇒ {s1 ?

= t1, . . . , su
?
= tu} ∪ Γ;σ

where f 6= ⊕, and u can possibly be 0.

Decomposen

{nu(s)
?
= nu(t)} ∪ Γ;σ =⇒ {s ?

= t} ∪ Γ;σ

ElimC

{Cj1 ⊕ . . .⊕ Cju
?
= ci,j1 ⊕ . . .⊕ ci,ju} ∪ Γ;σ =⇒ Γσ′;σσ′

where σ′ = {Cj1 7→ Cj2 ⊕ . . .⊕ Cju ⊕ ci,j1 ⊕ . . .⊕ ci,ju}.
ElimTk

{Tk ?
= tki} ∪ Γ;σ =⇒ Γσ′;σσ′

where σ′ = {Tk 7→ tki}.
Split

{s1 ⊕ f(nu(s2), s3)
?
= t1 ⊕ f(nu(t2), t3)} ∪ Γ;σ

=⇒ {s1 ?
= t1, f(nu(s2), s3)

?
= f(nu(t2), t3)} ∪ Γ;σ

where f is either e or d.

Figure 2: Inference System IB

The first thing to observe is that: {C1 7→ e(tk1, C2)⊕ c1,1⊕ e(tk1, c1,2)} is not a computable
substitution. If (C1 ⊕ e(tk1, C2))σ =⊕,EV

c1,1 ⊕ e(tk1, c1,2), there are two cases to consider:
(1) e(tk1, C2)σ =⊕ e(tk1, c1,2)
(2) e(tk1, C2)σ =⊕ t, where t ∈ EV . Due to the “Validity” property, e(tk1, c1,2) occurs

in EV . Due to the “Consistency” property, e(tk1, c1,2) is the only term in EV s.t. its first
argument is tk1.

In both cases, e(tk1, C2)σ =⊕ e(tk1, c1,2), which implies that C1 =⊕ c1,1.

Algorithm 1 Checking Symbolic Authenticity

Input: an authenticated encryption scheme S, whose verification equation is V .

if IB(lhs(V ), lhs(V )ωl
i) = ωl

i then
return “authentic”

else
return “inauthentic”

end if

The following example illustrates how Algorithm 1 can be used to check symbolic authen-
ticity of Π1 in Fig. 1.

Example 4. The verification equation of Π1 (Fig. 1) is the following:

5
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e(n2(Tk), C1 ⊕ C2) = Tg

According to Algorithm 1, we compute the most general (⊕, EV )-meta-unifier of e(n2(Tk), C1⊕
C2) and e(n2(tki), ci,1 ⊕ ci,2) using the following inference steps:

{e(n2(Tk), C1 ⊕ C2)
?
= e(n2(tki), ci,1 ⊕ ci,2)}; id

=⇒ {n2(Tk)
?
= n2(tki), C1 ⊕ C2

?
= ci,1 ⊕ ci,2}; id (Decompose)

=⇒ {Tk ?
= tki, C1 ⊕ C2

?
= ci,1 ⊕ ci,2}; id (Decomposen)

=⇒ {C1 ⊕ C2
?
= ci,1 ⊕ ci,2}; {Tk 7→ tki} (ElimTk)

=⇒ ∅; {C1 7→ C2 ⊕ ci,1 ⊕ ci,2, Tk 7→ tki} (ElimC)

{C1 7→ C2⊕ ci,1⊕ ci,2, Tk 7→ tki} 6= ω2
i . Therefore, S is not symbolically authentic. In fact,

instantiating i using any natural number leads to a valid new ciphertext message. For example,
(tk1, C2 ⊕ c1,1 ⊕ c1,2, C2, tg1) is a valid new ciphertext message, where C2 can be an arbitrary
message block, and C1 is C2 ⊕ c1,1 ⊕ c1,2.

5 Conclusions and Future Work

In this paper, we consider authenticity of authenticated encryption schemes. We propose the
notion of symbolic authenticity and present a decision procedure for checking symbolic authen-
ticity. We plan to apply this technique to automatically synthesize authenticated encryption
schemes that satisfy authenticity. The idea is to generate candidate authenticated encryption
schemes randomly and use our algorithm to filter out those that are not symbolically authentic.
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What, Again? Automatic Deductive 

Synthesis of the Unification Algorithm 
 

Richard Waldinger, Artificial Intelligence Center, SRI International 
 

Deductive program synthesis is an approach to automated programming in which the programming 

task is regarded as a problem in mathematical theorem proving.  A logical statement that specifies 

the purpose of the desired program is treated as a theorem to be proved.  The theorem expresses the 

existence of an output entity that satisfies the specification.  The proof is restricted to be sufficiently 

constructive to indicate a method for finding that output, and a program that employs the method is 

derived from the proof.  The proof also constitutes a verification of the correctness of this program.  

There are generally many proofs of the theorem and many corresponding programs.  

 

The Earlier Specification 
 

Unification [Herbrand 30] [Robinson 65] was an early target of program synthesis efforts, but the 

results fell short of a fully automatic derivation, one in which the program was obtained from the 

specification without human participation.  [Manna and Waldinger 81] provided a derivation, but it 

was purely manual. [Paulson 85] described an interactive verification using LCF, but took the 

program as a given, so it could not be regarded as a synthesis.  [Eriksson 84], [Nardi 89], and [Armando 

et al. 97] produced partial derivations interactively, not completely automatically. So, a fully 

automatic synthesis of a unification algorithm can still be regarded as a research goal. 

 

Although Robinson used the term “most-general unifier,” he never gave a specification for the 

unification algorithm or defined what it meant for one unifier to be more general than another.  

Since then, a theory of expressions and substitutions has been worked out (see, e.g., [Baader Snyder 

01].)  In [Manna and Waldinger 81] we defined a substitution 1 to be more general than 2 if, for 

some substitution , 1 ⬥  = 2, where ⬥ is the composition operator.  We started by specifying 

that the unification algorithm should find a most-general unifier for the given two terms e1 and e2 if 

the terms are unifiable; otherwise, it should return the special failure entity ⊥.  

 

We found that the proof would not go through unless we (by hand) strengthened the specification 

to require that the most-general unifier we find be idempotent. (An idempotent substitution  is one 

such that  ⬥  = .) The strengthened specification gave us the benefit of a stronger induction 

hypothesis.  We observed that, in the case in which 1 is idempotent, the condition that 1 is more 

general than 2 is equivalent to 1 ⬥ 2 = 2.  We shall say that a substitution 1 is idempotently more 

general than another substitution 2, denoted by 1 ≽gen 2, if 1 ⬥ 2 = 2.  In this case we shall also 



say that 2 is an extension of 1. For our synthesis work, we have found it convenient to use this 

stronger notion of more-generality. 

 

In [Waldinger 2020] we attempted to automate the derivation laid out in [Manna and Waldinger 81].  

We simplified the specification by a change in nomenclature: we regarded the failure entity ⊥ as an 

improper substitution, with the property that, for any term e,  e ◂⊥ = blackhole, where blackhole is 

a constant.  As a consequence, the improper substitution ⊥ “unifies” all expressions, but we don’t 

regard two expressions as unifiable unless they have a proper unifier, distinct from ⊥. (We say that 

such a substitution  satisfies is-subst().)  It holds that  ⬥ ⊥ = ⊥ and hence that  ≽gen ⊥ for all 

substitutions . In other words, any substitution is idempotently more general than the failure 

substitution. Also, a substitution  is idempotent if and only if  ≽gen . 

 

In the earlier paper, we took the specification for the unification algorithm to be the remarkably 

concise 

 

     unify(e1, e2)  ⇐  find  such that mgiu(, e1, e2), 

 

where mgiu(, e1, e2), that  is a most-general idempotent unifier of e1 and e2, is taken to mean that 

 

     e1◂  = e2◂ and 

     (∀’) [if e1◂' = e2◂' and 

                 is-subst(') 

               then  ≽gen ']. 

 

In other words,  is a unifier and is idempotently more general than any proper unifier. This implies 

that the unifier is most general and idempotent.  Note that, in the case in which e1 and e2 are not 

unifiable, this specification requires that  be the failure entity ⊥, because that is the only unifier of 

non-unifiable terms.  The fact that the specification does not treat non-unifiability as a special case 

simplifies the proof and the program as well as the specification, enabling us to avoid several case 

analyses. The theorem prover discovered a simpler program than the one we expected, and one that 

was marginally more efficient because it avoided some conditional tests. 

 

Introducing an Accumulator 
 

The automation of the synthesis had not been completed when the work-in-progress was reported 

at the Workshop on Logic and Practice of Programming (LPOP 2020).  During the discussion, 

however, the question came up whether the same techniques would allow the system to derive a 

more efficient unification algorithm.  Unless efficiency is specified, nothing guarantees that the 

theorem prover will come up with an efficient algorithm.  But one more efficient algorithm takes as 

an additional input an initial substitution 0, which keeps track of the partial unifier discovered so 



far in the unification process.1  We assume that the initial (accumulator) substitution is idempotent 

and require that the output most-general unifier be an extension of the accumulator.   Our new 

specification is 

 

     unify(0, e1, e2) ⇐  find  such that mgiu(0, , e1, e2), 

 

where mgiu(0, , e1, e2) is taken to mean that 

 

     if 0 ≽gen  0 

     then 0 ≽gen   and 

             e1◂  = e2◂ and 

             (∀’) [if e1◂' = e2◂' and 

                         is-subst(') and 

                        0 ≽gen  ' 

                      then  ≽gen ']. 

 

 

In other words, we seek a unifier that is an extension of the accumulator and that is idempotently 

more general that any unifier that is an extension of the accumulator, assuming that the 

accumulator is idempotent (i.e., 0 ≽gen  0).  Initially we take 0 to be the empty substitution {}. 

Because {} is idempotent and is idempotently more general than any substitution, this specification 

reduces to our original specification for the unification algorithm.  But this seemingly more complex 

and general specification leads to a simpler synthesis proof as well as a more efficient unification 

algorithm.  

 

Mathematical Induction for Program Synthesis 
 

As we have said, in deductive program synthesis we regard programming as a task in theorem 

proving.   To construct a program that, for a given input a, returns an output z that satisfies a 

specified input-output condition, we prove the existence of an output entity z that satisfies the 

condition.  In other words, given a specification of the form 

 

     f(a) ⇐ find z such that Q[a, z], 

 

we attempt to prove the theorem (∀ a)(∃ 𝑧)Q[a, z]. The proof is restricted to be sufficiently 

constructive so that a program that satisfies the specification can be extracted.   

 
1 This is analogous to a derivation of a program for exponentiation: instead of deriving a program to compute exp(a, b) ⇐ 

ab, we construct a more general program exp(c, a, b) ⇐ c * a
b.   Here the accumulator c keeps track of intermediate values 

of the computation.  Initially, we take c to be 1, so the value will be the desired exponentiation. Accumulators have long 

been employed in program transformation; e.g., see [Wegbreit 76] and [Burstall and Darlington 77] 



 

The structure of the program reflects the structure of the proof from which it was extracted.  A case 

analysis in the proof may produce a conditional expression in the extracted program.  The use of the 

principle of mathematical induction in the proof may yield a recursive call in the program.  A more 

leisurely introduction to the introduction of recursion in program synthesis is given in [Manna and 

Waldinger 81]. 

 

A well-founded relation is one that, like the natural numbers with <, admits no infinite decreasing 

sequences.  Our induction is well-founded induction:  For a given input a, we try to find an entity z 

that satisfies the input-output condition Q[a, z].  We may assume inductively that the program f we 

are trying to construct will satisfy the input-output condition for all inputs that are less than the 

given input a with respect to a well-founded relation ≺w.  In other words, we conduct the proof 

with the help of the induction hypothesis 

 

     if x ≺w  a 

     then Q[x, f(x)]. 

 

For the unification algorithm, we assume the induction hypothesis 

 

     if ⟨0', e1', e2'⟩ ≺w ⟨0, e1, e2⟩ 

     then mgiu(0', unify('  e1', e2'), e1', e2'). 

 

The well-founded relation ≺w is not specified in advance; w is a variable that ranges over well-

founded relations.  We actually prove a theorem of form (∃ 𝑤)(∀ a)(∃ 𝑧)Q[a, z]. It is not realistic to 

expect the theorem prover to guess the relation w until the proof is under way.  Instead, we extract 

the definition of the relation from the proof, by the same mechanism by which the program itself is 

extracted.  The proof is conducted in the context of the axiomatic theory of expressions and 

substitutions. We provide several primitive well-founded relations, such as the size of a term and the 

number of variables it contains; we expect the theorem prover to discover a lexicographic 

combination of these relations that will allow the proof to go through, but this part of the proof has 

not yet been automated.  In our experiments, we have temporarily provided the actual 

lexicographical combination of well-founded relations needed. 

 

Our experiments are conducted using the theorem prover SNARK [Stickel et al. 00], a first-order 

resolution theorem prover which contains advanced capabilities for extracting answers, programs, 

and other information from proofs.  Program synthesis is a challenging application, partly because it 

requires us to deal with full (universal and existential) quantification and mathematical induction.  

Typically, automatic theorem provers that focus on induction (e.g., ACL2) do not deal with 

theorems with explicit existential quantifiers, while resolution theorem provers do not deal with 

induction at all.  Furthermore, interesting program synthesis requires case analysis---otherwise, 

how else do we introduce conditional programs? But resolution theorem provers are not so good at 



case analysis.  Furthermore, our approach requires us to prove the existence of a suitable well-

founded relation, which would most easily be achieved in a higher-order-logic setting.  But as far as 

we can tell, existing automatic higher-order-logic theorem provers do not do program extraction at 

all, let alone the formation of conditional programs. 

 

To quantify over relations in a first-order setting, we reify relations.  In other words, when we mean 

that, say, x ≺w y, we actually write holds(w, x, y), where w is a variable that ranges over relations.  

Our theory also contains functions over relations; in the synthesis proof, we use the lexicographic 

function lex.  If ≺w1 and ≺w2
 are relations, their lexicographic combination ≺lex(w

1
, w

2
) is defined so that x 

≺lex(w
1
, w

2
)  y if and only if 

 

   x ≺w1 y or 

   (x ≼w1 y and x ≺w2 y). 

 

If ≺w1 and ≺w2 
are well-founded, ≺lex(w1, w2)  is also well-founded.  

 

 

 
 

Extracted Program Fragments  

 

In our experiments we have restricted our attention to symbolic expressions, like LISP S-

expressions, in which the only function is the cons function •.  (This is not a substantive 

simplification—for one thing, any functional term can be encoded as an S-expression.)   

 

While the proof is not complete, we have extracted program fragments for particular subcases.  For 

instance, in the part of the base case in which e1 is a variable and both e1 and e2 evade 0, we obtain 

 

     unify(0, e1, e2) ⇐  if  e1 ⋹ e2  

                                                         then ⊥  

                                 else if e1 = e2   

                                                                      then 0 

                                                                      else  0⬥ {e1 ← e2}. 

 

Here {e1 ← e2} is the replacement substitution, which replaces all occurrences of e1 with e2.  The 

famous occurs-check e1 ⋹ e2, that is, e1 is a proper-subexpression of e2 , has been introduced as a 

result of a case analysis in the proof.  (When we say e evades , we mean e◂ = e.)   SNARK’s proof, 

in clause form and with a more readable explanation, occurs at 

http://www.ai.sri.com/coffee/unif2021-occurs-check-proof-explanation.pdf 



 

In the non-atomic case, in which both e1 and e2 are conses, SNARK obtains the astonishingly simple 

tail-recursive program  

 

     unify(0, e1, e2) ⇐ unify(unify(0, left(e1), left(e2)),   

                                         right(e1), right(e2)). 

 

Here, left and right decompose conses, i.e., left(e1 • e2) = e1 and right(e1 • e2) = e2.  The proof from 

which this program was extracted uses two instances of the induction hypothesis, one for each 

recursive call. While we expected the program to require conditional expressions for the cases in 

which the left halves or the right halves were not unifiable, SNARK observed that this was 

unnecessary.  

 

While the theorem prover does not establish the complexity of the extracted program, by good luck 

it has obtained a more efficient program than the one in LPOP 2020. That program computed 

unifiers for the left and right subexpression of the arguments and then composed them, an 

expensive operation.  The only composition the new program does is 0⬥ {e1 ← e2}, i.e., to post-

pend a single replacement to a given substitution---relatively cheap! 

 

Concluding Remark  

 

One might argue that synthesizing a unification algorithm is pointless, since the algorithm is already 

known and, in fact, the theorem prover requires a unification algorithm to conduct the proof.  But, 

aside from its value as an exercise, developing a system that can synthesize unification algorithms 

may enable us on the fly to construct algorithms for new special theories, for which the unification 

problem is still unsolved. To do this, we would incorporate axioms for the new theory into our 

theory of expressions and substitutions.  And we could consider related problems, such as anti-

unification and matching.  But first things first. 
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Abstract
We present a unification problem based on first-order syntactic unification which ask

whether every problem in a particular infinite sequence of unification problems is unifiable.
The restricted structure of our sequence of unification problems allows an alternative for-
mulation of the problem as recursively calling first-order syntactic unification on certain
bindings if the unifier has a particular structure. The latter formulation allows us to con-
jecture a sufficient condition for unifiability of the sequence based on the structure of a
finite sequence of unifiers. It remains an open whether this condition is also necessary.

1 Introduction
We present a unification problem based on first-order syntactic unification which ask whether
every problem in a particular type of infinite sequences of unification problems is unifiable.
This problem denotes a special case of the schematic unification discussed in [3]. Overall this
work is related to earlier results concerning propositional and first-order schemata [1, 4].

In this short paper we briefly discuss the general form of the problem before focusing on an
important special case when every problem in the infinite sequence has the same right (left) side;
what we refer to as semiloop unification. While this seems like a significant simplification, the
problem remains difficult. The main difficulty is showing that it is possible to decide unifiability
of the entire sequence from unifiability of a finite segment. In particular, when the solved form
contains so called recursion variables which we discuss shortly. In our framework the existence
of recursion variables in the solved form implies that a part of the unification problem was left
unsolved and must be consider by the next problem in the sequence. It is not clear whether a
termination condition exists as some sequences of problems exhibit complex behavior.

2 Problem Description
We assume knowledge of syntactic first-order unification (See [2]).

2.1 Variable Classes
Let V be a countably infinite set of variable symbols. A variable class is a pair (Z,<), where
Z ⊂ V (countably infinite) and < is a strict well-founded total linear order. Associated with
each variable class (Z,<) is a successor function SucZ

<(·) of the class which has the following
properties:

∗Supported by the Linz Institute of Technology (LIT) MathLP project (LIT- 2019-7-YOU-213) funded by
the state of upper Austria.
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1) If x ∈ Z, then x < SucZ
<(x)

2) if x, y ∈ Z and SucZ
<(x) < SucZ

<(y) then x < y

We write Suc(·) or SucZ(·) when the parameters are clear from context.
To simplify notation we will consider classes of the form V x

N = ({xi | i ∈ N}, <N) where <N
is the strict well-founded total linear order of the natural numbers and x 6∈ {xi | i ∈ N}. The
successor function associated with V x

N is defined as Suc(xi) = xi+1. Note that this successor
function satisfies the above properties when x0 is the minimal element with respect to <N. Let
xi ∈ V x

N , then |xi| = i. Unless otherwise stated, if x 6= y, then the classes V x
N and V y

N contain
distinct variables.

2.2 Semiloop Unification
In addition to a standard first-order term signature Σ we require a countably infinite set of
recursion variables R. Recursion variables will be denoted using ·̂. Note, substitutions are
defined over V ∪R. By T (Σ, S, Z) we denote the term algebra whose members are constructed
using the signature Σ, Z = (

⋃
x∈X V x

N ) where X ⊂ V, and S ⊂ R. For t ∈ T (Σ, S, Z), var(t)
denotes the set of variables occurring in t.

Given a term t ∈ T (Σ, S, Z), we can generate the successor term of t modulo V , for V ⊆ Z
by applying the shift operator defined recursively as follows:

• sV (f(t1, · · · , tn)) = f(sV (t1), · · · , sV (tn))

• for z ∈ V , sV (z) = Suc(z)

• for â ∈ S, sV (â) = â

When V is clear from context we will simply write s(·).

Definition 1. Let s ∈ T (Σ, {â}, (⋃z∈Z V
z
N )) and t ∈ T (Σ, ∅, (⋃z∈Z V

z
N )). Then we refer to s

as (Σ, Z, â)-extendable and t as (Σ, Z, â)-fixed. Associated with each (Σ, Z, â)-extendable term
s is an unary operator exs

â(·) defined recursively as follows:

• exs
â(f(t1, · · · , tn)) = f(exs

â(t1), · · · , exs
â(tn))

• for z ∈ Z, exs
â(z) = z

• exs
â(â) = s

• for b̂ ∈ R such that â 6= b̂, exs
â(b̂) = b̂

Both s(·) and exs
â(·) may be applied to substitutions as follows: s(σ) = {s(y) 7→ s(t) | yσ =

t}, and exs
â(σ) = {y 7→ exs

â(t) | yσ = t}.

Definition 2. Let s be (Σ, Z, â)-extendable, t be (Σ, Z, b̂)-extendable. Then we refer to the pair
〈s, t〉 as a (Σ, Z, â, b̂)-loop. When it is clear from context we will write loop for (Σ, Z, â, b̂)-loop.

An important subclass of loops is the class of semiloops:

Definition 3. Let s be (Σ, Z, â)-extendable and r (Σ, Z)-fixed. Then we refer to the pair 〈s, r|
(|r, s〉) as a left (right) (Σ, Z, â)-semiloop. When it is clear from context we will write semiloop
for (Σ, Z, â)-semiloop.

2
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Note, that left and right semiloops are defined symmetrically. For the rest of this work, when
discussing semiloops, we will exclusively consider left semiloops unless we state otherwise.

Definition 4. Let 〈s, t〉 be a (Σ, Z, â, b̂)-loop and n ∈ N. The n-extension of 〈s, t〉, denoted by
〈s, t〉n, may be defined recursively as follows:

• 〈s, t〉0 = 〈â, b̂〉

• 〈s, t〉n+1 = 〈exs
â(s(s′)), ext

b̂
(s(t′))〉 where 〈s, t〉n = 〈s′, t′〉.

In the case of semiloops application of the operators may be ignored for the fixed term, i.e.
〈s, t|0 = 〈â, t|, and 〈s, t|n+1 = 〈exs

â(s(s′)), t| where 〈s, t|n = 〈s′, t|.

Example 1. The following pairs of terms are ({h}, {V x
N , V

y
N }, â, b̂)-loops:

a) 〈h(h(x1, h(x1, h(x1, x1))), â) , h(h(h(y1, y2), h(y4, y2)), b̂)〉

b) 〈h(h(x6, h(x1, x6)), x4) , h(y1, h(y2, y1))〉

c) 〈h(h(x6, h(x1, x6)), â) , h(y1, h(y2, , y1))|

Note, (c) is a semiloop.

Example 2. Below we construct the first few extensions of the semiloop

〈s, t| = 〈h(h(x6, h(x1, x6)), â) , h(y1, h(y2, y1))|

• 〈s, t|0 = 〈â , t|

• 〈s, t|1 = 〈h(h(x6, h(x1, x6)), â) , t|

• 〈s, t|2 = 〈h(h(x7, h(x2, x7)), h(h(x6, h(x1, x6)), â)) , t|

• 〈s, t|3 = 〈(h(h(x8, h(x3, x8)), h(h(x7, h(x2, x7)), h(h(x6, h(x1, x6)), â))) , t|

When unifying the terms of a loop we will consider recursion variables as a type of variable
with the following restrictions: Let σ be the m.g.u. of s ?= t where {x 7→ t′} ∈ σ, then for â ∈ R,
x = â iff t′ 6∈ V. The idea behind this restriction is that variables have a higher precedence
than recursion variables with respect to unification.

Definition 5. Let 〈s, t〉 be a (Σ, Z, â, b̂)-loop such that solving s ?= t results in an m.g.u. σ. We
refer to 〈s, t〉 as extendably unifiable if Dom(σ) ∩ {â, b̂} 6= ∅ .

Example 3. Consider the semiloop 〈h(h(x6, h(x1, x6)), â) , h(y1, h(y2, y1))| once again.
The unification problem h(h(x6, h(x1, x6)), â) ?= h(y1, h(y2, y1)) has a solved form {y1 7→
h(x6, h(x1, x6)) , â 7→ h(y2, h(x6, h(x1, x6)))} and thus is extendably unifiable. A slight varia-
tion, namely 〈h(h(x6, h(x1, x6)), â) , h(y1, y2)|, is not extendably unifiable as the solved form is
{y1 7→ h(x6, h(x1, x6)) , y2 7→ â}.

Definition 6 (Loop Unification Problem). Let X ⊆ Z. Given a (Σ, Z, â, b̂)-loop 〈s, t〉 such
that s is (Σ, (Z \X), â)-extendable and t is (Σ, X, b̂)-extendable, the loop unification problem,
denoted by s 	= t, is the problem of deciding if every extension of 〈s, t〉 is unifiable. We refer to
such loops as loop unifiable.

3
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Example 4. Consider: 〈h(h(h(x2, h(x1, x1)), x3), â) , h(h(y4, y3), h(y1, y2))|. The 0-extension
is always unifiable so we can ignore it. The 1-extension has the following unifier: {y3 7→
x3 , y4 7→ h(x2, h(x1, x1)) , â 7→ h(y1, y2)}. Thus, the 1-extension is extendably unifiable.
What about the 2-extension?

〈h(h(h(x3, h(x2, x2)), x4), h(h(h(x2, h(x1, x1)), x3), â)) , h(h(y4, y3), h(y1, y2))|

It is unified by: {y3 7→ x4 , y4 7→ h(x3, h(x2, x2)) , y1 7→ h(h(x2, h(x1, x1)), x3) , y2 7→ â}.
Notice that this extension is not extendably unifiable. From this unifier we can build a unifier
for every extension greater than 2. Due to space we do not go into detail concerning the
construction.

Example 5. Let 〈s, t| = 〈h(h(h(x2, x1), h(x2, x3)), â), h(h(y3, y1), h(y4, y4))|. The 1-extension
has the following unifier: {y3 7→ h(x2, x1) , y1 7→ h(x2, x3) , â 7→ h(y4, y4)}. Thus, the 1-
extension is extendably unifiable. What about the 2-extension

〈h(h(h(x3, x2), h(x3, x4)), h(h(h(x2, x1), h(x2, x3)), â)) , t|?

It has the following unifier:{y3 7→ h(x3, x2) , y1 7→ h(x3, x4) , y4 7→ h(h(x2, x1), h(x2, x3)) ,
â 7→ h(h(x2, x1), h(x2, x3))}. The 2-extension is also extendably unifiable. The 3-extension
is 〈h(h(h(x4, x3), h(x4, x5)), h(h(h(x3, x2), h(x3, x4)), s)) , t|. Notice that the solved form con-
tains an occurrence check on the variable x2 and thus the 3-extension is not unifiable.
{y3 7→ h(x4, x3) , y1 7→ h(x4, x5) , y4 7→ h(h(x3, x2), h(x3, x4)) , â 7→ h(x3, x4) , x3 7→
h(x2, x1) , x2 7→ h(x2, x3)}.

Definition 7. Let 〈s, t〉 be a loop which is loop unifiable. We say 〈s, t〉 is infinitely loop
unifiable if for every n ∈ N, 〈s, t〉n is extendably unifiable. Otherwise, we say 〈s, t〉 is finitely
loop unifiable.

Example 6. The following is a simply example of a semiloop which is infinitely loop unifiable:
〈h(h(x1, x1), â) , h(y1, y1)|. Notice that for every extension the solved form contains either
â 7→ h(y1, y1) or â 7→ h(x1, x1). Thus, every extension is extendably unifiable.

Interestingly, even simple examples can lead to infinite loop unifiability:

Example 7. Consider 〈h(â, h(h(h(x1, x1), x1), x1)), h(h(h(h(y1, y1), y1), y1), y1)|. While this
may not be clear from looking at this semiloop, for n ≥ 1, the solved form of the (3n)-extension
contains: {â 7→ h(h(h(h(h(x2, x2), x2), x2), h(h(h(x2, x2), x2), x2)), h(h(h(x2, x2), x2), x2))},
the solved form of the (3n + 1)-extension contains: {â 7→ h(h(h(h(x2, x2), x2), x2), h(h(h(x2,
x2), x2), x2))}, the solved form of the (3n+2)-extension contains: {â 7→ h(h(h(x2, x2), x2), x2)}.
This pattern repeats for all m-extensions where m > 2.

2.3 Towards Termination Conditions
Consider the following procedure:

1: function LoopUnif(〈s, t|, k)
2: if 〈s, t|k is extendably unifiable then
3: LoopUnif(〈s, t|, k + 1)
4: end if
5: end function

4
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Question: Is termination of LoopUnif(〈s, t|, 1) is decidable?

In the previous section we described a few cases for which LoopUnif(〈s, t|, 1) does not
terminate. In each of these cases exists there is cyclic behavior in the solved forms. Below, we
provide a somewhat formal definition of what we mean be cyclic behavior

3 Cyclicity Conjecture
Before we state our conjecture, we need to define one additional construction.

Definition 8. Let 〈s, t| be infinitely unifiable. Then the loop sequence of 〈s, t|, denoted by
loopSeqs,t is defined as follows:

• loopSeqs,t(0) = t

• loopSeqs,t(i+ 1) = ri+1 where {â 7→ ri+1} ∈ σ and σ is the unifier of 〈s, t|i

Conjecture 1 (cyclicity). Let 〈s, t| be infinitely unifiable. Then there exists i, k ∈ N, such that
for all i ≤ j, loopSeqs,t(j) = loopSeqs,t(j + k)

Note that the cyclicity property provides a sufficient condition for non-termination of
LoopUnif(〈s, t|, 1). A weaker statement would be as follows:

Conjecture 2 (weak cyclicity). Let 〈s, t| be infinitely unifiable. Then there exists i, k ∈ N,
such that for all i ≤ j, |loopSeqs,t(j)| = |loopSeqs,t(j + k)|

While the weak cyclicity conjecture is less interesting, it allows us to present interesting
examples succinctly. Note, in both examples below, terms with equal size are syntactically
equivalent. This does not hold in the general case. For the following example LoopUnif does
not terminate and a cycle of length 3 is found.

Example 8.
〈h(x1, h(x4, h(x1, x4))), x∗) , h(y1, h(y4, h(y1, y4)))|

|loopSeqs,t(0)| = 5 |loopSeqs,t(1)| = 7
|loopSeqs,t(2)| = 6 |loopSeqs,t(3)| = 5
|loopSeqs,t(4)| = 7 |loopSeqs,t(5)| = 9
|loopSeqs,t(6)| = 8 |loopSeqs,t(7)| = 7
|loopSeqs,t(8)| = 9 |loopSeqs,t(9)| = 8
|loopSeqs,t(10)| = 10 |loopSeqs,t(11)| = 9
|loopSeqs,t(12)| = 8 |loopSeqs,t(13)| = 10
|loopSeqs,t(14)| = 9 |loopSeqs,t(15)| = 8

While this example follows the cyclicity conjecture there exists very similar examples which
are not infinitely unifiable but exhibit cyclicity at some points:

Example 9.
s = h(h(x1, h(x16, h(x32, h(x1, h(x16, x32))))), x∗)

t = h(y1, h(y16, h(y32, h(y1, h(y16, y32)))))

5
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|loopSeqs,t(0)| = 7 |loopSeqs,t(1)| = 10
|loopSeqs,t(2)| = 10 |loopSeqs,t(3)| = 9
|loopSeqs,t(4)| = 8 |loopSeqs,t(5)| = 7
|loopSeqs,t(6)| = 10 |loopSeqs,t(7)| = 10
|loopSeqs,t(8)| = 9 |loopSeqs,t(9)| = 8
|loopSeqs,t(10)| = 7 |loopSeqs,t(11)| = 10
|loopSeqs,t(12)| = 10 |loopSeqs,t(13)| = 9
|loopSeqs,t(14)| = 8 |loopSeqs,t(15)| = 7
|loopSeqs,t(16)| = 10 |loopSeqs,t(17)| = 10
|loopSeqs,t(18)| = 14 |loopSeqs,t(19)| = 13
|loopSeqs,t(20)| = 12 |loopSeqs,t(21)| = 11
|loopSeqs,t(22)| = 10 |loopSeqs,t(23)| = 18
|loopSeqs,t(24)| = 13 |loopSeqs,t(25)| = 12
|loopSeqs,t(26)| = 11 |loopSeqs,t(27)| = 15

Notice that the cycle 7, 10, 10, 9, 8 repeats 3 times before breaking. The 28-extension is not
unifiable.

While this last example does not refute the conjecture, it illustrates that even if the conjec-
ture holds our question concerning termination remains non-trivial.
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Abstract

Given a forward-closed convergent string rewriting system R and two strings α, β , the common
left multiplier problem is to find a string W , which when concatenated to the left of the given strings
α, β respectively will make the resulting strings Wα and Wβ joinable with respect to R. In this
paper, we provide a polynomial-time algorithm for this problem.

Keywords: string-rewriting systems, forward-closed, convergent

1 Introduction

In this paper, we present a polynomial-time algorithm for the common left multiplier problem for
forward-closed convergent string rewriting systems. Our work is motivated by [7], where convergent
and forward-closed string rewriting systems were studied.

The common left multiplier problem for a string rewriting system R is to find, given two strings α
and β , a string W such that Wα and Wβ are congruent modulo R. If R is convergent and forward-closed,
then we can assume that α and β are irreducible with respect to R and the question becomes whether
there is a string W such that Wα and Wβ are joinable, i.e., Wα ↓ Wβ . Note that this can be viewed as a
particular case of the unification problem, where we consider symbols in the alphabet as unary function
symbols and treat concatenation as function composition in the following way: ab(x) = b(a(x)). The
unification problem in general for forward-closed, convergent string rewriting systems (i.e., where there
could be more than one equation) is NP-complete [6].

This problem was first investigated by Otto who showed decidability when R is convergent and
monadic1 [10]. It was also shown that the problem is in P in this case [9].

Here we come up with a polynomial-time algorithm for this problem when the string rewriting sys-
tem is convergent and forward-closed. The algorithm is based on narrowing, since upward-innermost
narrowing is known to terminate in the case of forward-closed convergent rewrite systems. To achieve
the polynomial-time result we use search dags that we call “narrowing dag”. We also utilize pre-
processing steps to avoid unnecessary recomputation. The dag will generate a list of candidate strings
that are possible suffixes of the left multiplier we are looking for, along with the resulting normal forms.
After which, we need to effectively solve two equations to determine the unknown string W .

Proofs are omitted due to lack of space.
1A string rewriting system is monadic if and only if the length of every right-hand side is either 0 or 1
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2 Definitions

We give only a few essential definitions here; for more details, the reader is referred to [1] for term
rewriting systems, and to [2] for string rewriting systems.

Let R be a convergent, forward closed string rewriting system. A redex is a string of the form wl
where w ∈ Σ∗ and l is a left-hand side of a rule. A redex is innermost if no proper prefix of it is a redex.
If all the innermost redexes can be reduced to their normal forms in a single rewrite step then the system
is called forward-closed. A string is irreducible (or in normal form) if and only if it contains no redex.
The set of all strings that are irreducible modulo a string rewriting system R is denoted IRR(R). The size
of a string-rewriting system, denoted |R|, is the sum of the lengths of all left-hand sides and right-hand

sides: |R| = ∑
l→r∈R

|l|+ |r|.

For a string w, let SUF(w) denote the set of all its suffixes, and SUBST(w) the set of all its substrings.

Let L be the set of all left-hand sides of R and

Γ = {x | x is an irreducible substring of some left-hand side of R}

Let ∆ = (Σ ◦Γ) r (Γ ∪ L ◦Σ∗). Thus the strings in ∆ are themselves not proper substrings of any
left-hand side; but all their proper suffixes are proper substrings of some left-hand side. Besides, the
strings in ∆ are irreducible. Thus ∆ can also be written as ∆ =

(
(Σ◦Γ) r Γ

)
∩ IRR(R). Note that |Γ|

is O(|R|2) and |∆| is O(|Σ| ∗ |R|2).
For instance, for R = {ab → c, abc → cc}, we have Σ = {a, b, c}, then Γ = {ε, a, b, c, bc} and

∆ = {aa, ac, ba, bb, bc, bbc, ca, cb, cc, cbc}.
We define leftmost-largest rewriting (ll-rewriting) as follows: let ≺ be a given total ordering on the

alphabet Σ and ≺L be its shortlex extension [11, page 14]. A rewrite step xly → xry is leftmost-largest
if and only if (a) xl is an innermost redex, (b) any other left-hand side that is a suffix of xl is a suffix
of l as well, and (c) if l→ r′ is another rule in the rewrite system, then r ≺L r′. (Condition (c) is clearly
redundant if R is convergent and right-reduced.)

We generalize this a little to deal with tuples of strings. Let (x, y) be a tuple of irreducible strings.
An ll-rewrite step on this tuple is defined a follows:

(x, y) ll−→ (x′, y′)

if and only if there are strings x1,x2,y1,y2 and a rule l → r such that x = x1x2, y = y1y2, l = x2y1,
x′ = x1r, y′ = y2, and xy1 = x1l → x1r = x′ is an ll-rewrite step. (Note that neither x2 nor y1 can be ε .)

Lemma 2.1. [6] Let R be a convergent, forward-closed string rewriting system and x,y be two irre-
ducible strings. Then xy can be reduced to its normal form in at most |y| ll-rewrite steps.

Narrowing modulo a convergent string rewriting system R can be defined in the following way: let
x be an irreducible string and l→ r be a rule in R. Then

x  [p, l→r] rx2

if and only if there is a non-empty string x1 such that x = x1x2, p = |x2|< |x| and x1 is a suffix of l.

2
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For instance, consider the system {abb → ab} which is convergent (and forward-closed). Then
baa  [2,abb→ab] abaa. Here x1 = b and x2 = aa.

For a system R, we write x  [p,R] y if and only if there is a rule (l → r) such that x  [p, l→r] y.
A narrowing sequence x1  [p1,R] x2  [p2,R] . . .  [pn−1,R] xn is upward-innermost if and only if
p1 > p2 > .. . > pn. Clearly upward-innermost narrowing2 always terminates. It has been shown that
upward-innermost narrowing is complete if the rewrite system is convergent and forward-closed.

3 The Common Left Multiplier Problem

The problem we are trying to solve is the following:

Input: A convergent forward-closed SRS R and two irreducible strings α, β .

Question: Does there exist a string W such that Wα ↓R Wβ ?

Note that we can assume without loss of generality that the string W that we are looking for is
irreducible as well. Now if Wα and Wβ have the same normal form, then by Lemma 2.1, Wα can be
reduced to its normal form in |α| ll-rewrite steps or less and Wβ can be reduced to its normal form in |β |
ll-rewrite steps or less. Thus there must be strings W1,W2,W3,W4,α ′,β ′ such that W = W1W2 = W3W4,
W2α →! α ′, W4β →! β ′, and W1α ′ = W3β ′ where W2 and W4 are the parts of W that is involved in
the ll-rewrite sequences.

A nondeterministic-polynomial (NP) time algorithm for unification modulo forward-closed and con-
vergent term rewriting systems is straightforward and well-known3. Our approach is to carefully analyze
these possible ll-rewrite steps to obtain possible candidates for W2 and W4. To model this reduction se-
quence, we first define a transition relation on 3-tuples (triples) of strings from IRR(R) × IRR(R) ×
IRR(R). Suppose we want to normalize Uα where U is an irreducible string. Our aim is to apply
ll-rewrite steps. The initial triple is

(
U, ε, α

)
.

The steps are as follows:

(i)
(
Ub, V, W

)
7→

(
U, bV, W

)
if V is a proper substring of a left-hand side and

bV is irreducible

(ii)
(
U, V1V2, W1W2

)
7→

(
U, V1Z, W2

)
if (V1V2, W1)

ll−→ (V1Z, ε) is an ll-rewrite step and
step (i) is not applicable. (Note: V1V2 ∈ IRR(R).)

In other words, we apply step (ii) only when the second component of the triple is not a proper
substring of any left-hand side, i.e., V ∈ IRR(R) r Γ. One thing to note here is this: suppose we have
been applying step (i) and at some point we move to step (ii). Then the point at which we move to
step (ii) is when V ∈ ∆.

2This concept has been further refined in [8] as BNR: basic narrowing with right-hand side abstracted
3Since forward-closed systems have the finite variant property [3, 4, 5]

3
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An invariant property is that concatenation of the first and second components in the triple results in
an irreducible string, i.e., XY is irreducible in all tuples

(
X , Y, Z

)
. Another invariant property is that

the third component is a suffix of α .

Since we do not know U in advance, we need to mimic these by applying (upward-innermost)
narrowing steps to α . For this we construct what we call a “narrowing dag” or n-dag which resembles a
finite-state automaton. The nodes of the n-dag are two-tuples (pairs) which correspond to the second and
third components of the triples we introduced earlier. The start or root node is (ε, α). The transitions
are defined as follows:

T1: (u, v) a−→ (au, v) if u is a proper substring of a left-hand side and au is irreducible.

If u is not an irreducible proper substring of a left-hand side, i.e., u 6∈ Γ, then either uv is irreducible
in which case we halt, or it is reducible and we apply an ll-rewrite step to (u, v). (Thus if v is ε we

halt.) But after applying this step, (u, v) ll−→ (u′, v′), the string u′ could be in Γ in which case we can
introduce an ε-transition

(u, v) ε−→ (u′, v′)

If not, then we have to try applying an ll-rewrite step again, which could lead to a chain of ε-
transitions. To avoid this we use the following pre-processing step:

For all suffixes α1 of α , and all strings w ∈ ∆, let β1 be the result of an ll-rewrite step on wα1. If
β1 is not a proper substring of an lhs, then apply ll-rewrite again. Alternatively, for all tuples (u, v)
in ∆ × SUF(α) apply the following procedure P:

1: if uv is irreducible then return (u, v)

else let (u, v) ll−→ (u′, v′)
if u′ ∈ Γ then return (u′, v′)

else goto 1

Let P(u, v) denote the output of this procedure on input (u, v). Thus the above ε-transition can be
modified to

T2: (u, v) ε−→ P(u, v) if u 6∈ Γ and uv is reducible.

Note that a node that has an ε-transition going out of it has no other transitions.

A table for P can be computed in polynomial time since computing each entry involves at most |α|
ll-rewrite steps. The table has |∆| ∗ |α| entries and |∆| is O(|Σ| ∗ |R|2) as mentioned earlier.

Lemma 3.1. Let Dα be the n-dag for α and Dβ be the n-dag for β . The common left multiplier problem
for α and β has a solution if and only if there are leaf nodes (u, v) in Dα and (x, y) in Dβ and paths π1

in Dα to (u, v), π2 in Dβ to (x, y), such that either

(a) π2 = zπ1 and xy = zuv for some z, or

(b) π1 = z′π2 and z′xy = uv for some z′.

Lemma 3.2. For any irreducible string α , the number of nodes in the n-dag for (ε, α) is polynomial
in |α| and |R|.

4
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Proof-sketch: Since every node is labelled by a pair of strings, we derive an upper bound on pairs that
can appear in an n-dag for (ε, α). From the transitions we can see that there are two kinds of pairs: (a)
those that belong to Γ × SUF(α) and (b) those that belong to ∆ × SUF(α) and possibly one extra we
could get by applying P(u,v). Thus |Γ × SUF(α)| + 2∗ |∆ × SUF(α)| is a weak upper bound for the
maximum number of nodes in the n-dag. This is O(|Σ| ∗ |R|2 ∗ |α|). 2

Lemma 3.3. Checking whether there is a root-to-leaf path π in an n-dag can be done in time linear in
the size of the n-dag.

Proof-sketch: Since there are no chains of ε-transitions, we can trace the string starting from the root
and check whether a leaf is reached at the end. 2

Since each n-dag can be constructed in polynomial time and the condition in Lemma 3.1 can be
checked in linear time we can conclude that the whole algorithm runs in P.

4 Some Examples

Input: A convergent forward-closed SRS R = {bc → b, bbd → b}
and two irreducible strings α = cc, β = db.
Σ = {b, c, d}
Γ = {ε, b, c, d, bb, bd}
∆ = {cb, cc, cd, db, dc, dd, bbb, cbb, dbb, cbd, dbd}

Question: Does there exist a string W such that Wα ↓R Wβ ?

By applying pre-processing steps, we can find that ∆ × SUF(α) contains the tuples (bbb, cc),
(cbb, cc), (dbb, cc), (cb, cc), (db, cc) that have chains of ε-transitions. For example,

(bbb, cc) ε−→ (bbb, c) ε−→ (bbb, ε)

which will be shown in the dag as: (bbb, cc) ε−→ (bbb, ε). On the other hand, the tuples (bbb, c),
(cbb, c), (dbb, c), (cb, c), (db, c) have only one ε-transition from them. And the rest of the tuples are
irreducible.

(ε, cc)

(b, cc)

(bb, cc)

(bbb, cc)

(bbb, ε)

(cbb, cc)

(cbb, ε)

(dbb, cc)

(dbb, ε)

(cb, cc)

(cb, ε)

(db, cc)

(db, ε)

(c, cc)

(cc, cc) (dc, cc)

(d, cc)

(bd, cc)

(cbd, cc) (dbd, cc)

(cd, cc) (dd, cc)

b

b

b

ε

c

ε

d

ε

c

ε

d

ε

c

c d

d

b

c d

c
d

Starting from (ε, cc), we create transitions by T1 till we reach a level when we cannot apply T1
any further. There we will create ε-transitions by T2. One of the paths for α obtained using the above
method is: (ε, cc) b−→ (b, cc) b−→ (bb, cc) b−→ (bbb, cc) ε−→ (bbb, ε) .

5
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(ε, db)

(b, db)

(bb, db)

(bbb, db)

(bb, b)

(bbb, b) (cbb, b) (dbb, b)

(cbb, db)

(cb, b)

(dbb, db)

(db, b)

(cb, db) (db, db)

(c, db)

(cc, db) (dc, db)

(d, db)

(bd, db)

(cbd, db) (dbd, db)

(cd, db) (dd, db)

b

b

b

ε

b
c

d

c

ε

d

ε

c
d

c

c d

d

b

c d

c
d

Similarly, there is a path for β :

(ε, db) b−→ (b, db) b−→ (bb, db) b−→ (bbb, db) ε−→ (bb, b) b−→ (bbb, b)

From these two paths we can find one common left multiplier W = bbbb. We can also get other
solutions such as cbbb, dbbb, cbb, and dbb from these n-dags.

5 Future Work

We plan to extend this work to other classes of string-rewriting systems, such as the class of sequentially-
closed systems introduced by Yu Zhang in [12, 13]. Another possible extension is to context rewriting
where a context can be viewed as a linear term with exactly one variable occurrence.

6 Acknowledgements

We thank Dan Hono and the reviewers for their detailed comments, which helped improve the paper.

References

[1] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press, 1998.
[2] Ronald V. Book and Friedrich Otto. String-Rewriting Systems. Texts and Monographs in Computer Science.

Springer, 1993.
[3] Christopher Bouchard, Kimberly A. Gero, Christopher Lynch, and Paliath Narendran. On forward closure

and the finite variant property. In Pascal Fontaine, Christophe Ringeissen, and Renate A. Schmidt, editors,
Frontiers of Combining Systems - 9th International Symposium, FroCoS 2013, Nancy, France, September
18-20, 2013. Proceedings, volume 8152 of Lecture Notes in Computer Science, pages 327–342. Springer,
2013.

[4] Hubert Comon-Lundh and Stephanie Delaune. The Finite Variant Property: How to Get Rid of Some Al-
gebraic Properties. In J. Giesl, editor, Term Rewriting and Applications, volume 3467 of Lecture Notes in
Computer Science, pages 294–307. Springer Berlin Heidelberg, 2005.

6



Common Left Multiplier Problem for Forward-closed String Rewriting Systems Du, Narendran, Acharya

[5] Santiago Escobar, Ralf Sasse, and Jose Meseguer. Folding variant narrowing and optimal variant termination.
Journal of Logic and Algebraic Programming, 81(7-8):898–928, 2012.

[6] Daniel S. Hono II. On LM-systems and forward-closed string rewriting systems. PhD thesis, Dept. of Com-
puter Science, University at Albany—SUNY, Albany, NY, 2018.

[7] Daniel S Hono II, Paliath Narendran, and Rafael Veras. Lynch-Morawska systems on strings. In Informal
Proceedings of the 30th International Workshop on Unification (UNIF 2016), page 19, 2016.

[8] Dohan Kim, Christopher Lynch, and Paliath Narendran. Reviving basic narrowing modulo. In Andreas Herzig
and Andrei Popescu, editors, Frontiers of Combining Systems - 12th International Symposium, FroCoS 2019,
London, UK, September 4-6, 2019, Proceedings, volume 11715 of Lecture Notes in Computer Science, pages
313–329. Springer, 2019.

[9] Paliath Narendran and Friedrich Otto. Some polynomial-time algorithms for finite monadic church-rosser
thue systems. Theor. Comput. Sci., 68(3):319–332, 1989.

[10] Friedrich Otto. On two problems related to cancellativity. Semigroup Forum, 33:331–356, 1986.
[11] Michael Sipser. Introduction to the Theory of Computation. Course Technology, Boston, MA, Third edition,

2013.
[12] Yu Zhang. Sequentially-closed and forward-closed String Rewriting Systems. PhD thesis, Dept. of Computer

Science, University at Albany—SUNY, Albany, NY, 2019.
[13] Yu Zhang, Paliath Narendran, and Heli Patel. On forward-closed and sequentially-closed string rewriting

systems. In UNIF 2019: 33rd International Workshop on Unification, June 24, 2019.

7


	About the unification type of modal logic K5 and its extensions
	Majid Alizadeh, Mohammad Ardeshir, Philippe Balbiani and Mojtaba Mojtahedi

	Restricted Unification in the Description Logic FL0
	Franz Baader, Oliver Fernández Gil and Maryam Rostamigiv

	Nominal Disunification via Fixed-Point Constraints
	Leonardo M. Batista, Maribel Fernández, Daniele Nantes-Sobrinho and Deivid Vale

	Nominal Anti-Unification with Atom-Variables
	Manfred Schmidt-Schauß

	Checking Symbolic Security of Cryptographic Modes of Operation
	Hai Lin and Christopher Lynch

	Formal Analysis of Symbolic Authenticity
	Hai Lin and Christopher Lynch

	What, Again? Automatic Deductive Synthesis of the Unification Algorithm
	Richard Waldinger

	When First-order Unification Calls itself
	David M. Cerna

	A Polynomial-time Algorithm for the Common Left Multiplier Problem for Forward-closed String Rewriting Systems
	Wei Du, Paliath Narendran and Bharvee Acharya


