Pedro Pérez Aros Profesor Asociado

    Pedro Perez
    Grado Académico

    Doctor en Ciencias de la Ingeniería con mención en modelación matemática, Universidad de Chile, Chile

    Título(s) Profesional

    Ingeniero Civil Matemático, Universidad de Chile.

    Descripción

    Pedro Pérez Aros estudio ingeniería Civil matemática en la Universidad de Chile. Es en esta institución donde inicia sus estudios acerca del análisis variacional y la optimización. Posteriormente continuo sus estudios doctorales en la misma institución, adentrándose en temas relativos a la optimización estocástica. En enero 2018 obtuvo el grado de Doctor en ciencias de la ingeniería mención modelación matemática.

    24

    3

    Tikhonov-like regularization of dynamical systems associated with nonexpansive operators defined in closed and convex sets

    • Pedro Pérez Aros • Emilio José Vilches Gutiérrez •

    DOI: http://dx.doi.org/10.1007/s10107-014-0831-8

    New extremal principles with applications to stochastic and semi-infinite programming

    • Boris S. Mordukhovich • Pedro Pérez Aros •

    DOI: http://dx.doi.org/10.1007/s10107-020-01548-4

    Gradient Formulae for Nonlinear Probabilistic Constraints with Non-convex Quadratic Forms

    • Wim van Ackooij • Pedro Pérez Aros •

    DOI: http://dx.doi.org/10.1007/s10957-020-01634-9

    Subdifferential Calculus Rules for Possibly Nonconvex Integral Functions

    • Rafael Correa • Abderrahim Hantoute • Pedro Pérez Aros •

    DOI: http://dx.doi.org/10.1137/18m1176476

    Ergodic Approach to Robust Optimization and Infinite Programming Problems

    • Pedro Pérez Aros •

    DOI: http://dx.doi.org/10.1007/s10107-020-01593-z

    Necessary and sufficient optimality conditions in DC semi-infinite programming

    • Rafael Correa • Marco A. López • Pedro Pérez Aros •

    DOI: http://dx.doi.org/10.1007/s11228-021-00590-4

    Characterizations of the subdifferential of convex integral functions under qualification conditions

    • Rafael Correa • Abderrahim Hantoute • Pedro Pérez Aros •

    DOI: http://dx.doi.org/10.1016/j.jfa.2019.02.007

    Generalized gradients for probabilistic/robust (probust) constraints

    • Wim van Ackooij • René Henrion • Pedro Pérez Aros •

    DOI: http://dx.doi.org/10.1080/02331934.2019.1576670

    Subdifferential Formulae for the Supremum of an Arbitrary Family of Functions

    • Pedro Pérez Aros •

    DOI: http://dx.doi.org/10.1137/17m1163141

    Generalized Differentiation of Probability Functions Acting on an Infinite System of Constraints

    • Wim van Ackooij • Pedro Pérez Aros •

    DOI: http://dx.doi.org/10.1137/18m1181262

    Subdifferential characterization of probability functions under Gaussian distribution

    • Abderrahim Hantoute • René Henrion • Pedro Pérez Aros •

    DOI: http://dx.doi.org/10.1007/s10107-018-1237-9

    Formulae for the Conjugate and the Subdifferential of the Supremum Function

    • Pedro Pérez Aros •

    DOI: http://dx.doi.org/10.1007/s10957-018-1350-1

    On the Klee–Saint Raymond’s Characterization of Convexity

    • Rafael Correa • Abderrahim Hantoute • Pedro Pérez Aros •

    DOI: http://dx.doi.org/10.1137/15m1037111

    Determination of convex functions via subgradients of minimal norm

    • Pedro Pérez Aros • David Sebastián Salas Videla • Emilio José Vilches Gutiérrez •

    DOI: http://dx.doi.org/10.1007/s10107-020-01550-w

    Dynamic probabilistic constraints under continuous random distributions with applications to a hydro-power optimization model

    • Tatiana González Grandón • René Henrion • Pedro Pérez Aros •

    DOI: http://dx.doi.org/10.1007/s10107-020-01593-z

    Generalized Differentiation of Expected-Integral Mappings with Applications to Stochastic Programming, Part~I: Sequential Calculus for Expected-Integral Functionals.

    • Boris S. Mordukhovich • Pedro Pérez Aros •

    DOI: http://dx.doi.org/10.1007/s11228-021-00590-4

    MVT, integration, and monotonicity of a generalized subdifferential in locally convex spaces

    • Rafael Correa Fontecilla • Abderrahim Hantoute • Pedro Pérez Aros •

    DOI: http://dx.doi.org/10.1007/s11228-021-00590-4

    On formulae for the Ioffe geometric subdifferential of supremum function

    • Pedro Pérez Aros • David Sebastián Salas Videla • Emilio José Vilches Gutiérrez •

    DOI: http://dx.doi.org/10.1007/s11228-021-00590-4

    Qualification Conditions-Free Characterizations of the $\varepsilon$-Subdifferential of Convex Integral Functions

    • Rafael Correa • Abderrahim Hantoute • Pedro Pérez Aros •

    DOI: http://dx.doi.org/10.1007/s00245-019-09604-y

    An Enhanced Baillon-Haddad Theorem for Convex Functions Defined on Convex Sets

    • Pedro Pérez Aros • Emilio José Vilches Gutiérrez •

    DOI: http://dx.doi.org/10.1007/s00245-019-09626-6

    Weak Compactness of Sublevel Sets in Complete Locally Convex Spaces.

    • Pedro Pérez Aros • Lionel Thibault •

    DOI: http://dx.doi.org/10.1007/s00245-019-09626-6

    On Brøndsted–Rockafellar’s Theorem for convex lower semicontinuous epi-pointed functions in locally convex spaces

    • Rafael Correa Fontecilla • Abderrahim Hantoute • Pedro Pérez Aros •

    DOI: http://dx.doi.org/10.1007/s00245-019-09626-6

    Generalized differentiation of probability functions: the case of parameter dependent sets given by intersections of convex sets and their complements

    • Wim van Ackooij • Pedro Pérez Aros •

    DOI: http://dx.doi.org/10.1007/s00245-022-09844-5

    Control in probability for SDE model of growth population

    • Cristóbal Sebastián Quiñinao Montero • Pedro Pérez Aros • Mauricio Tejo •

    DOI: http://dx.doi.org/10.1007/s00245-022-09915-7

    • ● Abril 2020

    Generalized Differentiation And Variational Analysis Of Probability Functions

    Investigador/a Responsable
    • ● Enero 2020

    Stochastic Optimization and Chance Constraints with Applications to Energy (SOCCAE)

    Responsable Alterno
    • ● Abril 2019

    Subdifferential calculus in the framework of DC functions and applications

    Co-Investigador/a